Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.742 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CERTEC - Centre d'Estudis del Risc Tecnològic
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CERTEC - Centre d'Estudis del Risc Tecnològic
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental large-scale jet flames’ geometrical features extraction for risk management using infrared images and deep learning segmentation methods

Thumbnail
View/Open
JLPPI_per drac.pdf (1,851Mb)
 
10.1016/j.jlp.2022.104903
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/381225

Show full item record
Pérez Guerrero, Carmina
Palacios, Adriana
Ochoa Ruíz, Gilberto
Foroughi, VahidMés informacióMés informació
Pastor Ferrer, ElsaMés informacióMés informacióMés informació
González Mendoza, Miguel
Falcón Morales, Luis Eduardo
Document typeArticle
Defense date2022-12-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Jet fires are relatively small and have the least severe effects among the diverse fire accidents that can occur in industrial plants; however, they are usually involved in a process known as the domino effect, that leads to more severe events, such as explosions or the initiation of another fire, making the analysis of such fires an important part of risk analysis. This research work explores the application of deep learning models in an alternative approach that uses the semantic segmentation of jet fires flames to extract the flame’s main geometrical attributes, relevant for fire risk assessments. A comparison is made between traditional image processing methods and some state-of-the-art deep learning models. It is found that the best approach is a deep learning architecture known as UNet, along with its two improvements, Attention UNet and UNet++. The models are then used to segment a group of vertical jet flames of varying pipe outlet diameters to extract their main geometrical characteristics. Attention UNet obtained the best general performance in the approximation of both height and area of the flames, while also showing a statistically significant difference between it and UNet++. UNet obtained the best overall performance for the approximation of the lift-off distances; however, there is not enough data to prove a statistically significant difference between Attention UNet and UNet++. The only instance where UNet++ outperformed the other models, was while obtaining the lift-off distances of the jet flames with 0.01275 m pipe outlet diameter. In general, the explored models show good agreement between the experimental and predicted values for relatively large turbulent propane jet flames, released in sonic and subsonic regimes; thus, making these radiation zones segmentation models, a suitable approach for different jet flame risk management scenarios.
CitationPérez, C. [et al.]. Experimental large-scale jet flames' geometrical features extraction for risk management using infrared images and deep learning segmentation methods. "Journal of loss prevention in the process industries", 1 Desembre 2022, vol. 80, núm. 104903. 
URIhttp://hdl.handle.net/2117/381225
DOI10.1016/j.jlp.2022.104903
ISSN0950-4230
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S0950423022001796
Collections
  • CERTEC - Centre d'Estudis del Risc Tecnològic - Articles de revista [136]
  • Doctorat en Enginyeria de Processos Químics - Articles de revista [141]
  • Departament d'Enginyeria Química - Articles de revista [2.434]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
JLPPI_per drac.pdf1,851MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina