Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.567 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex

Thumbnail
View/Open
2022.06.23.22276492v1.full.pdf (4,216Mb)
Share:
 
 
10.1101/2022.06.23.22276492
 
  View Usage Statistics
Cita com:
hdl:2117/381211

Show full item record
Cumplido Mayoral, Irene
García Prat, Marina
Operto, Grégory
Falcón, Carles
Shekari, Mahnaz
Cacciaglia, Raffaele
Milà Alomà, Marta
Lorenzini, Luigi
Ingala, Silvia
Vilaplana Besler, VerónicaMés informacióMés informacióMés informació
Document typeResearch report
Defense date2022-06-28
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectINTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES MEDICAS (AEI-PID2020-116907RB-I00)
Abstract
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD and OASIS. Brain-age delta was associated with abnormal amyloid-b, more advanced stages (AT) of AD pathology and APOE-e4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging related to markers of AD and neurodegeneration.
CitationCumplido, I. [et al.]. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. 2022. DOI 10.1101/2022.06.23.22276492. 
URIhttp://hdl.handle.net/2117/381211
DOI10.1101/2022.06.23.22276492
Other identifiershttps://www.medrxiv.org/content/10.1101/2022.06.23.22276492v1
Collections
  • Departament de Teoria del Senyal i Comunicacions - Reports de recerca [186]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2022.06.23.22276492v1.full.pdf4,216MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina