A 2.5D automatic FEM-SBM method for the evaluation of free-field vibrations induced by underground railway infrastructures
Cita com:
hdl:2117/381178
Document typeConference report
Defense date2022
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
This paper presents an efficient method to predict underground railway-induced vibrations. The method uses the finite element method (FEM) to model the railway tunnel structure and the singular boundary method (SBM) to model the wave propagation in the surrounding soil. The FEM mesh and the distribution of SBM collocation points at the tunnel/soil interface are generated using an automatic meshing strategy. The presented method is one of the main components of VIBWAY, a user-friendly prediction tool to address railway-induced vibration problems. This paper presents three calculation examples in which the soil response due to forces applied on the tunnel structure are computed in terms of transfer functions. The results obtained for each one of the calculation examples are compared with those computed using a model based on a 2.5D FEM-BEM approach. The presented comparisons show that the proposed approach is a suitable strategy for predicting underground railway-induced vibrations, both in terms of accuracy and computational efficiency. Moreover, the use of an automatic meshing strategy and the SBM formulation not only eases the implementation of the approach but it also makes it easier to use, which is one of the key features of the VIBWAY tool.
CitationLiravi, H.; Clot, A.; Arcos, R. A 2.5D automatic FEM-SBM method for the evaluation of free-field vibrations induced by underground railway infrastructures. A: International Congress and Exposition on Noise Control Engineering. "Inter-Noise 2022: Glasgow, 21-24 August 2022: proceedings". 2022, p. 1-11. ISBN 978-1-906913-42-7.
ISBN978-1-906913-42-7
Publisher versionhttps://internoise2022.org/
Files | Description | Size | Format | View |
---|---|---|---|---|
paperHassanLiraviIN2022.pdf | Article Internoise 2022 Hassan Liravi | 915,6Kb | View/Open |