Show simple item record

dc.contributorMartorell Bofill, Xavier
dc.contributorCarpenter, Paul Matthew
dc.contributor.authorAguilar Mena, Jimmy
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2023-01-19T19:46:07Z
dc.date.available2023-01-12T08:30:41Z
dc.date.issued2022-11-23
dc.identifier.citationAguilar Mena, J. Methodology for malleable applications on distributed memory systems. Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2022. DOI 10.5821/dissertation-2117-380814.
dc.identifier.urihttp://hdl.handle.net/2117/380814
dc.descriptionA la portada logo BSC
dc.description.abstract(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work.
dc.description.abstract(Español) El modelo de programación dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar múltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensión del modelo de programación basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a pequeña y mediana escala, un modelo basado en tareas es más simple y productivo que MPI y elimina la necesidad de distribuir los datos explícitamente y convertir todas las dependencias en mensajes. Además, evita la complejidad de la programacion híbrida MPI+X. En segundo lugar; la capacidad de enviar partes del cálculo entre los nodos permite a la librería balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librería quien maneja todos los aspectos relacionados con distribución y transferencia de datos, es posible la modificación dinámica y transparente de los recursos que utiliza la aplicación. Esta tesis describe el diseño, desarrollo y evaluación de OmpSs-2@Cluster; un modelo de programación y librería que extiende OmpSs-2 permitiendo la ejecución de programas OmpSs-2 existentes en múltiples nodos sin prácticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorización de Cholesky. Este trabajo incluye la extensión de OmpSs-2@Cluster para interactuar con MPI y la librería de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecución de una aplicación de mecánica de sólidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implementó otra extensión de la librería para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El único cambio requerido en la aplicación es la llamada explicita a una función de la interfaz que controla la adición o eliminación de nodos. Además, se agregó la funcionalidad de guardar y recuperar parte del estado de la aplicación de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribución de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster amplía el modelo de programación de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecución de programas OmpSs-2 en múltiples nodos prácticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite además el balanceo dinámico de carga en aplicaciones híbridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librería tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.
dc.format.extent163 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.otherOmpSs-2
dc.subject.otherRuntime
dc.subject.otherDistributed memory
dc.subject.otherMessage page interface (MPI)
dc.subject.otherCluster
dc.titleMethodology for malleable applications on distributed memory systems
dc.typeDoctoral thesis
dc.identifier.doi10.5821/dissertation-2117-380814
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.audience.degreeDOCTORAT EN ARQUITECTURA DE COMPUTADORS (Pla 2012)
dc.identifier.tdxhttp://hdl.handle.net/10803/687393


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record