Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
76.434 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Ciberseguretat (Pla 2020)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Ciberseguretat (Pla 2020)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dataset for hardware Trojan detection

Thumbnail
View/Open
TFM (1).pdf (848,6Kb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/377370

Show full item record
Mus León, Sergi
Tutor / directorOtero Calviño, BeatrizMés informacióMés informacióMés informació; Canal Corretger, RamonMés informacióMés informacióMés informació
Document typeMaster thesis
Date2022-07-14
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Nowadays, cloud services rely extensively on the use of virtual machines to enforce security by isolation. However, hardware trojan attacks break this assumption. Within these attacks, cache side-channel attacks such as Spectre and Meltdown are the focus of this work. In this project, we develop a set of tools to generate a dataset; and a dataset that will allow the use of Machine Learning techniques to detect Spectre and Meltdown attacks (i.e. using a cache side-channel). When released, this dataset will enable researchers to compare their ML-based detection proposals based on the same dataset (which is not currently the case). Also, it eliminates the need of an infected computer to generate the attacks and the corresponding dataset for subsequent research studies.
SubjectsDeep learning, Machine learning, Computer security, Aprenentatge profund, Aprenentatge automàtic, Seguretat informàtica
DegreeMÀSTER UNIVERSITARI EN CIBERSEGURETAT (Pla 2020)
URIhttp://hdl.handle.net/2117/377370
Collections
  • Màsters oficials - Màster universitari en Ciberseguretat (Pla 2020) [110]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFM (1).pdf848,6KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina