Optimizing online time-series data imputation through case-based reasoning

View/Open
Document typeConference report
Defense date2022
PublisherIOS Press
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial 4.0 International
Abstract
When working with Intelligent Decision Support Systems (IDSS), data quality could compromise decisions and therefore, an undesirable behaviour of the supported system. In this paper, a novel methodology for time-series online data imputation is proposed. A Case-Based Reasoning (CBR) system is used to provide such imputation approach. The CBR principle (i.e., solving the current problem using past solutions to similar problems) may be applied to data imputation, using values from similar past situations to replace incorrect or missing values. To improve the performance of the data imputation process, optimal case feature weights are obtained using genetic algorithms (GA). The proposed methodology is validated with data obtained from a real Waste Water Treatment Plant (WWTP) process.
CitationPascual, J.; Sànchez-Marrè, M.; Cugueró-Escofet, M.À. Optimizing online time-series data imputation through case-based reasoning. A: International Conference of the Catalan Association for Artificial Intelligence. "Artificial intelligence research and development: proceedings of the 24th International Conference of the Catalan Association for Artificial Intelligence". Amsterdam: IOS Press, 2022, p. 87-90. ISBN 978-1-64368-327-0. DOI 10.3233/FAIA220320.
ISBN978-1-64368-327-0
Publisher versionhttps://ebooks.iospress.nl/volumearticle/61226
Collections
- Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.219]
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.413]
- SIC - Sistemes Intel·ligents de Control - Ponències/Comunicacions de congressos [148]
- KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Ponències/Comunicacions de congressos [110]
- Doctorat en Intel·ligència Artificial - Ponències/Comunicacions de congressos [31]
Files | Description | Size | Format | View |
---|---|---|---|---|
FAIA-356-FAIA220320.pdf | 775,4Kb | View/Open |