Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.879 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Estadística i Investigació Operativa (UPC-UB)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Estadística i Investigació Operativa (UPC-UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparison between machine learning and classic algorithms for GDP forecast

Thumbnail
View/Open
memoria.pdf (736,5Kb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/375350

Show full item record
Monar Aguilar, Kenny Xavier
Tutor / directorGabarró Vallés, Joaquin
Document typeMaster thesis
Date2022-10
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 3.0 Spain
Abstract
In the recent years there has been an explosive increase in the number of research papers using machine learning methods for forecasting. In this work, I will focus on comparing the estimation of GDP using classical and machine learning methods. In particular, I am interested in analyzing if the index S\&P 500 can help forecast the GDP, therefore I will take as a basis a work where a VAR model is used to analyze the relationship between GDP and S\&P 500. From there I use three recently developed implementations of the gradient boosting decision tree to model GDP and S\&P 500. The recent implementations are XGBoost, LightGBM and CatBoost and are very famous because they are widely used in winner solutions in Kaggle competitions. The metric I use to do the comparisson is the Mean Squared Error and by using the three machine learning algorithms, I find that they provide better results than the Vector Autoregressive. I also perform grid search with several parameters, taking into account regularization, to avoid overfitting and obtain the lowest mean squared error. To select the best model I consider the evaluation results along with the overfitting measure and finally I take a look to the prediction charts of all the algorithms. In my opinion XGBoost offers the best predictions in this exercise.
SubjectsMathematical statistics, Regression analysis, Machine learning, Estadística matemàtica, Aprenentatge automàtic
URIhttp://hdl.handle.net/2117/375350
Collections
  • Màsters oficials - Màster universitari en Estadística i Investigació Operativa (UPC-UB) [476]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf736,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina