Show simple item record

dc.contributor.authorLi, Yalei
dc.contributor.authorNadal Francesch, Sergi
dc.contributor.authorRomero Moral, Óscar
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.date.accessioned2022-10-27T09:02:09Z
dc.date.available2023-08-29T00:28:08Z
dc.date.issued2022
dc.identifier.citationLi, Y.; Nadal, S.; Romero, O. A data quality framework for graph-based virtual data integration systems. A: European Conference on Advances in Databases and Information Systems. "Advances in Databases and Information Systems: 26th European Conference, ADBIS 2022: Turin, Italy, September 5-8, 2022: proceedings". Berlín: Springer, 2022, p. 104-117. ISBN 978-3-031-15740-0. DOI 10.1007/978-3-031-15740-0_9.
dc.identifier.isbn978-3-031-15740-0
dc.identifier.urihttp://hdl.handle.net/2117/375124
dc.description.abstractData Quality (DQ) plays a critical role in data integration. Up to now, DQ has mostly been addressed from a single database perspective. Popular DQ frameworks rely on Integrity Constraints (IC) to enforce valid application semantics, which lead to the Denial Constraint (DC) formalism which models a broad range of ICs in real-world applications. Yet, current approaches are rather monolithic, considering a single database and do not suit data integration scenarios. In this paper, we address DQ for data integration systems. Specifically, we extend virtual data integration systems to elicit DCs from disparate data sources to be integrated, using DC-related state-of-the-art, and propagate them to the integrated schema (global DCs). Then, we propose a method to manage global DCs and identify (i) minimal DCs and (ii) potential clashes between them.
dc.description.sponsorshipThis work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovación under project PID2020-117191RB-I00. Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovación, as well as the European Union - NextGenerationEU, under project FJC2020-045809-I.
dc.format.extent14 p.
dc.language.isoeng
dc.publisherSpringer
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació
dc.subject.lcshDecision-making
dc.subject.lcshBig data
dc.subject.otherData quality
dc.subject.otherData integration
dc.subject.otherDenial constraints
dc.titleA data quality framework for graph-based virtual data integration systems
dc.typeConference report
dc.subject.lemacDecisió, Presa de
dc.subject.lemacDades massives
dc.contributor.groupUniversitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering
dc.identifier.doi10.1007/978-3-031-15740-0_9
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-15740-0_9
dc.rights.accessOpen Access
local.identifier.drac34229433
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117191RB-I00/ES/DESARROLLO, OPERATIVA Y GOBERNANZA DE DATOS PARA SISTEMAS SOFTWARE BASADOS EN APRENDIZAJE AUTOMATICO/
local.citation.authorLi, Y.; Nadal, S.; Romero, O.
local.citation.contributorEuropean Conference on Advances in Databases and Information Systems
local.citation.pubplaceBerlín
local.citation.publicationNameAdvances in Databases and Information Systems: 26th European Conference, ADBIS 2022: Turin, Italy, September 5-8, 2022: proceedings
local.citation.startingPage104
local.citation.endingPage117


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record