Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació
  • Capítols de llibre
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació
  • Capítols de llibre
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An elastic software architecture for extreme-scale big data analytics

Thumbnail
View/Open
978-3-030-78307-5_5.pdf (1,027Mb)
 
10.1007/978-3-030-78307-5_5
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/374061

Show full item record
Serrano Garcia, Maria Aston
Marín, César A.
Queralt Calafat, AnnaMés informacióMés informacióMés informació
Cordeiro, Cristovao
González Hierro, Marco
Pinho, Luis Miguel
Quiñones Moreno, Eduardo
Document typePart of book or chapter of book
Defense date2022
PublisherSpringer
Rights accessOpen Access
Attribution 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 International
ProjectELASTIC - A Software Architecture for Extreme-ScaLe Big-Data AnalyticS in Fog CompuTIng ECosystems (EC-H2020-825473)
Abstract
This chapter describes a software architecture for processing big-data analytics considering the complete compute continuum, from the edge to the cloud. The new generation of smart systems requires processing a vast amount of diverse information from distributed data sources. The software architecture presented in this chapter addresses two main challenges. On the one hand, a new elasticity concept enables smart systems to satisfy the performance requirements of extreme-scale analytics workloads. By extending the elasticity concept (known at cloud side) across the compute continuum in a fog computing environment, combined with the usage of advanced heterogeneous hardware architectures at the edge side, the capabilities of the extreme-scale analytics can significantly increase, integrating both responsive data-in-motion and latent data-at-rest analytics into a single solution. On the other hand, the software architecture also focuses on the fulfilment of the non-functional properties inherited from smart systems, such as real-time, energy-efficiency, communication quality and security, that are of paramount importance for many application domains such as smart cities, smart mobility and smart manufacturing.
CitationSerrano, M. [et al.]. An elastic software architecture for extreme-scale big data analytics. A: "Technologies and applications for big data value". Berlín: Springer, 2022, p. 89-110. 
URIhttp://hdl.handle.net/2117/374061
DOI10.1007/978-3-030-78307-5_5
ISBN978-3-030-78306-8
Publisher versionhttps://link.springer.com/book/10.1007/978-3-030-78307-5
Collections
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació - Capítols de llibre [29]
  • Computer Applications in Science & Engineering - Capítols de llibre [8]
  • inSSIDE - integrated Software, Service, Information and Data Engineering - Capítols de llibre [18]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
978-3-030-78307-5_5.pdf1,027MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina