Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.941 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Facultat d'Informàtica de Barcelona
  • Grau en Ciència i Enginyeria de Dades (Pla 2017)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Facultat d'Informàtica de Barcelona
  • Grau en Ciència i Enginyeria de Dades (Pla 2017)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sign language translation with pseudo-glosses

Thumbnail
View/Open
170395.pdf (7,511Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/373981

Show full item record
Cabot Álvarez, Patricia
Tutor / directorGiró Nieto, XavierMés informacióMés informació; Tarrés, Laia
Document typeBachelor thesis
Date2022-06-29
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
La Traducció de la Llengua de Signes és un problema obert que té com a objectiu generar frases escrites a partir de vídeos de signes. En els darrers anys, molts treballs de recerca que s'han desenvolupat en aquest camp van abordar principalment la tasca de Reconeixement de la Llengua de Signes, que consisteix a comprendre els signes d'entrada i transcriure'ls en seqüències d'anotacions. A més, els estudis actuals mostren que aprofitar aquesta darrera tasca ajuda a aprendre representacions significatives i es pot veure com un pas intermig cap a l'objectiu final de traducció. En aquest treball, presentem un mètode per generar pseudo-glosses automàtiques a partir de les frases escrites, que pot funcionar com a substitució de les glosses reals. Això aborda el problema de la seva adquisició, ja que s'han d'anotar manualment i és extremadament costós. A més, introduïm una nova implementació basada en Fairseq de l'enfocament del model Transformer introduït per Camgoz et al., que està entrenat conjuntament per resoldre les tasques de reconeixement i traducció. També proporcionem nous resultats de referència per ambdues implementacions: en primer lloc, per la base de dades Phoenix, presentem resultats que superen els proporcionats per Camgoz et al. en el seu treball i, en segon lloc, per la base de dades How2Sign, presentem els primers resultats de la tasca de traducció. Aquests resultats poden servir de base per a futures investigacions en el camp.
 
Sign Language Translation is an open problem whose goal is to generate written sentences from sign videos. In recent years, many research works that have been developed in this field mainly addressed the Sign Language Recognition task, which consists in understanding the input signs and transcribing them into sequences of annotations. Moreover, current studies show that taking advantage of the latter task helps to learn meaningful representations and can be seen as an intermediate step towards the end goal of translation. In this work, we present a method to generate automatic pseudo-glosses from written sentences, which can work as a replacement for real glosses. This addresses the issue of their collection, as they need to be manually annotated and it is extremely costly. Furthermore, we introduce a new implementation built on Fairseq of the Transformer-model approach introduced by Camgoz et al., which is jointly trained to solve the recognition and translation tasks. Besides, we provide new baseline results on both implementations: first, on the Phoenix dataset, we present results that outperform the ones provided by Camgoz et al. in their work, and, second, on the How2Sign dataset, we present the first results on the translation task. These results can work as a baseline for future research in the field.
SubjectsSign language, Deep learning (Machine learning), Llenguatge de signes, Aprenentatge profund
DegreeGRAU EN CIÈNCIA I ENGINYERIA DE DADES (Pla 2017)
URIhttp://hdl.handle.net/2117/373981
Collections
  • Facultat d'Informàtica de Barcelona - Grau en Ciència i Enginyeria de Dades (Pla 2017) [163]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
170395.pdf7,511MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina