Preliminary study and design of the avionics system for an eVTOL aircraft.

View/Open
Cita com:
hdl:2117/373258
Author's e-mailtoniturgarcia99
gmail.com

Tutor / directorMellibovsky Elstein, Fernando

; Yúfera Gomez, José Manuel

; Suriaca Álvarez, Jaume; Pertulla, Antti






Document typeBachelor thesis
Date2022-09-09
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The project consists of the study, creation, implementation, and development of the avionics system of an electric Vertical Take-Off and Landing (eVTOL) airplane for an ongoing project from the company ONAEROSPACE. The plane is intended to be for 7 passengers and 1 pilot, with a maximum range of 1000+ km. The fuselage will be formed of carbon fiber composite to reduce weight and it will use electric motors powered by batteries. The avionics system will provide the aircraft with communication and navigation systems, an autonomous Take-Off (T/O) and landing system, as well as the development of cockpit management systems. This document is divided into two parts. The first part begins with the study of all the necessary tools for communication and navigation systems. That means all compulsory antennas and sensors to obtain information about the surroundings (weather, obstacles, other planes¿). The intern communication network to send data from these sensors and antennas to main flight management systems is also studied in this first part. The second part of the project is dedicated to cabin cockpit systems and the study for the future development of autonomous systems. The cabin will have a full-glass cockpit, with touchable screens and an intelligent voice assistant. It will be very ergonomic and simple, with a lot of space in the cabin. In order to have an idea of the cost of the implementation of all the systems for the aircraft, a weight and cost estimation analysis are done at the end of each section. The last part of the project consists of the study of the design of a virtual intelligent voice assistant and the implementation of autonomous systems. Nowadays, the virtual intelligent voice assistant is an artificial intelligence system that works as a pilot monitoring system which assists the pilot in order to decrease the pilot¿s workload. The future idea is that the pilot could tell commands to the voice assistant and do nothing with the hands, just control that everything works correctly. Regarding the autonomous system, the conclusion is that with the existent technology is not possible today. Nevertheless, in the future, when fully autonomous aircraft are possible, the idea is that although being fully autonomous, the pilot can take the control of the aircraft at any moment.
DegreeGRAU EN ENGINYERIA DE SISTEMES AEROESPACIALS/GRAU EN ENGINYERIA TELEMÀTICA (Pla 2015)
Mobilitat outgoing
Mobilitat outgoing
Files | Description | Size | Format | View |
---|---|---|---|---|
memoria.pdf | 3,991Mb | View/Open |