Show simple item record

dc.contributorMiró Jané, Arnau
dc.contributorFont, Bernat
dc.contributor.authorSimó Muñoz, Irene
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2022-09-06T07:49:50Z
dc.date.available2022-09-06T07:49:50Z
dc.date.issued2022-07-18
dc.identifier.urihttp://hdl.handle.net/2117/372288
dc.description.abstractFlow turbulence modeling is an expensive computational operation that is often run with simulations using physical simplifications to reduce the cost. Large-eddy simulations (LES) of turbulent flow often make use of wall models in order to lower the computational cost of the simulation in the regions near solid walls, where typically the flow activity contains the smallest structures. Instead of resolving the boundary layer spatiotemporal scales, an algebraic expression for the fluid velocity field yields the wall shear stress, which is then used as a boundary condition to the outer flow, also known as wall modeling. Recently, novel wall model formulations are being developed using data-driven methods which exploit datasets generated with accurate wall-resolved large eddy simulation. However, it is still unclear what dimensional groups should be used to normalise such datasets when the wall shear stress is the target output, rather than a known quantity. The first goal of this dissertation is to explore such relevant groups across the dataset using machine learning applications as multi-expression genetic programming, a tool that allows to derive optimal expressions based on a population of initial candidates and a fitness function. The second goal is to be able to use it to find a correcting expression that yields the wall shear stress given other data and the defined groups.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshTurbulence
dc.subject.lcshEddies
dc.subject.lcshComputational fluid dynamics
dc.subject.lcshMachine learning
dc.subject.otherWall model
dc.subject.otherLES
dc.subject.otherShear stress
dc.subject.otherDimensional group
dc.subject.otherMachine learning
dc.titleDiscovering new scaling laws in turbulent boundary layers via multi-expression programming
dc.typeBachelor thesis
dc.subject.lemacTurbulència
dc.subject.lemacRemolins (Mecànica de fluids)
dc.subject.lemacDinàmica de fluids computacional
dc.subject.lemacAprenentatge automàtic
dc.identifier.slugPRISMA-169294
dc.rights.accessOpen Access
dc.date.updated2022-08-24T18:34:21Z
dc.audience.educationlevelGrau
dc.audience.mediatorEscola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa
dc.audience.degreeGRAU EN ENGINYERIA EN TECNOLOGIES AEROESPACIALS (Pla 2010)


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record