Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.096 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa
  • Grau en Enginyeria en Tecnologies Aeroespacials (Pla 2010)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa
  • Grau en Enginyeria en Tecnologies Aeroespacials (Pla 2010)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovering new scaling laws in turbulent boundary layers via multi-expression programming

Thumbnail
View/Open
Memòria (1,566Mb)
Pressupost (140,4Kb)
Memòria (amb dades confidencials) (1,558Mb) (Restricted access)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/372288

Show full item record
Simó Muñoz, Irene
Author's e-mailirenemunozsimoarrobagmail.com
Tutor / directorMiró Jané, ArnauMés informacióMés informacióMés informació; Font, Bernat
Document typeBachelor thesis
Date2022-07-18
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 4.0 International
Abstract
Flow turbulence modeling is an expensive computational operation that is often run with simulations using physical simplifications to reduce the cost. Large-eddy simulations (LES) of turbulent flow often make use of wall models in order to lower the computational cost of the simulation in the regions near solid walls, where typically the flow activity contains the smallest structures. Instead of resolving the boundary layer spatiotemporal scales, an algebraic expression for the fluid velocity field yields the wall shear stress, which is then used as a boundary condition to the outer flow, also known as wall modeling. Recently, novel wall model formulations are being developed using data-driven methods which exploit datasets generated with accurate wall-resolved large eddy simulation. However, it is still unclear what dimensional groups should be used to normalise such datasets when the wall shear stress is the target output, rather than a known quantity. The first goal of this dissertation is to explore such relevant groups across the dataset using machine learning applications as multi-expression genetic programming, a tool that allows to derive optimal expressions based on a population of initial candidates and a fitness function. The second goal is to be able to use it to find a correcting expression that yields the wall shear stress given other data and the defined groups.
SubjectsTurbulence, Eddies, Computational fluid dynamics, Machine learning, Turbulència, Remolins (Mecànica de fluids), Dinàmica de fluids computacional, Aprenentatge automàtic
DegreeGRAU EN ENGINYERIA EN TECNOLOGIES AEROESPACIALS (Pla 2010)
URIhttp://hdl.handle.net/2117/372288
Collections
  • Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa - Grau en Enginyeria en Tecnologies Aeroespacials (Pla 2010) [401]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Simo_Munoz_Irene_Report.pdfMemòria1,566MbPDFView/Open
Simo_Munoz_Irene_Budget.pdfPressupost140,4KbPDFView/Open
Simo_Munoz_Irene_Report.pdfBlockedMemòria (amb dades confidencials)1,558MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina