Show simple item record

dc.contributor.authorAhmed, Soyed Tuhin
dc.contributor.authorMayahinia, Mahta
dc.contributor.authorHefenbrock, Michael
dc.contributor.authorMünch, Christopher
dc.contributor.authorTahoori, Mehdi B.
dc.date.accessioned2022-07-08T08:20:00Z
dc.date.available2022-09-01T08:07:22Z
dc.date.issued2022-05
dc.identifier.citationAhmed, S.T. [et al.]. POS2 - Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric. A: 27th IEEE European Test Symposium (ETS). 2022,
dc.identifier.urihttp://hdl.handle.net/2117/372130
dc.description.abstractNeural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.
dc.format.extent2 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica::Microelectrònica
dc.subject.lcshMicroelectronics
dc.subject.lcshIntegrated circuits
dc.subject.lcshSpintronics
dc.titlePOS2 - Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric
dc.typeConference report
dc.subject.lemacMicroelectrònica
dc.subject.lemacCircuits integrats
dc.subject.lemacEspintrònica
dc.relation.publisherversionhttps://ieeexplore.ieee.org/xpl/conhome/9810327/proceeding
dc.rights.accessRestricted access - publisher's policy
local.citation.contributor27th IEEE European Test Symposium (ETS)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record