A VMS–based fractional step technique for the compressible Navier–Stokes equations using conservative variables
View/Open
33810640.pdf (6,631Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/371375
Document typeArticle
Defense date2022-06
Rights accessRestricted access - publisher's policy
(embargoed until 2024-03-28)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
In this paper we address the compressible Navier–Stokes equations written in the so-called conservative formulation. In particular, we focus on the possibility of uncoupling the computation of the problem unknowns, namely, density, linear momentum and total energy, a technique usually labeled as fractional step method, which allows to reduce the associated computational cost. The proposed methodology is a finite-element solver supplemented with a stabilization technique within the Variational Multi-Scale framework. In this regard, we consider orthogonal and dynamic definitions for the subscales. This discretization in space shows an adequate stability, permitting in particular the use of equal interpolation for all variables in play. However, we complement it with a shock-capturing operator in order to solve problems involving shocks. Several representative benchmark flow simulations are performed, which demonstrate the suitability of the proposed algorithm for a vast range of regimes.
CitationParada, S.; Codina, R.; Baiges, J. A VMS–based fractional step technique for the compressible Navier–Stokes equations using conservative variables. "Journal of computational physics", Juny 2022, vol. 459, p. 111137:1-111137:25.
ISSN0021-9991
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0021999122001991
Files | Description | Size | Format | View |
---|---|---|---|---|
33810640.pdf![]() | 6,631Mb | Restricted access |