Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Enginyeria de la Construcció
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Enginyeria de la Construcció
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Condition level deteriorations modeling of RC beam bridges with U-Net convolutional neural networks

Thumbnail
View/Open
STRUCTURES-D-22-00902_R1.pdf (1,513Mb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Share:
 
 
10.1016/j.istruc.2022.06.013
 
  View Usage Statistics
Cita com:
hdl:2117/371356

Show full item record
Lei, Xiaoming
Xia, Ye
Komarizadehasl, SeyedmiladMés informacióMés informacióMés informació
Sun, Limin
Document typeArticle
Defense date2022-08
PublisherElsevier
Rights accessRestricted access - publisher's policy (embargoed until 2024-06-14)
Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Reinforced concrete (RC) beam bridges have suffered structural deterioration due to loads, environmental conditions, etc. Regular visual inspections of bridges effectively monitor the structural condition level and provide a vast amount of condition-related data for years. This study proposes a deep learning-based condition level deterioration modeling method with a U-Net model to improve the prediction accuracy of future structural conditions. The proposed method is supported by the data gathered from the years of regional bridge inspection reports. Before training the model, the regional condition-related features regarding the influence of bridge ages and the superstructure types are investigated, and the correlations between selected features and structural conditions are also revealed. The acquired inspection database validated the high prediction accuracy and classification performance of each bridge's main part and system with the proposed deterioration modeling method. Its robustness is tested under a variety of data missing rate scenarios. The optimum model architecture and its effectiveness are also validated through comparative studies. This study provides a novel method to predict the future structural condition with inspection data and could serve as a reference for more reasonable utilization of the bridge condition deterioration model in structural condition assessment and management.
CitationLei, X. [et al.]. Condition level deteriorations modeling of RC beam bridges with U-Net convolutional neural networks. "Structures", Agost 2022, vol. 42, p. 333-342. 
URIhttp://hdl.handle.net/2117/371356
DOI10.1016/j.istruc.2022.06.013
ISSN2352-0124
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S2352012422004933
Collections
  • Doctorat en Enginyeria de la Construcció - Articles de revista [85]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
STRUCTURES-D-22-00902_R1.pdfBlocked1,513MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina