Scanflow-K8s: agent-based framework for autonomic management and supervision of ML workflows in Kubernetes clusters

Cita com:
hdl:2117/371292
Document typeConference report
Defense date2022
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Machine Learning (ML) projects are currently heavily based on workflows composed of some reproducible steps and executed as containerized pipelines to build or deploy ML models efficiently because of the flexibility, portability, and fast delivery they provide to the ML life-cycle. However, deployed models need to be watched and constantly managed, supervised, and debugged to guarantee their availability, validity, and robustness in unexpected situations. Therefore, containerized ML workflows would benefit from leveraging flexible and diverse autonomic capabilities. This work presents an architecture for autonomic ML workflows with abilities for multi-layered control, based on an agent-based approach that enables autonomic management and supervision of ML workflows at the application layer and the infrastructure layer (by collaborating with the orchestrator). We redesign the Scanflow ML framework to support such multi-agent approach by using triggers, primitives, and strategies. We also implement a practical platform, so-called Scanflow-K8s, that enables autonomic ML workflows on Kubernetes clusters based on the Scanflow agents. MNIST image classification and MLPerf ImageNet classification benchmarks are used as case studies to show the capabilities of Scanflow-K8s under different scenarios. The experimental results demonstrate the feasibility and effectiveness of our proposed agent approach and the Scanflow-K8s platform for the autonomic management of ML workflows in Kubernetes clusters at multiple layers.
CitationLiu, P. [et al.]. Scanflow-K8s: agent-based framework for autonomic management and supervision of ML workflows in Kubernetes clusters. A: IEEE/ACM International Symposium on Cluster Computing and the Grid. "22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing: CCGrid 2022: proceedings: 1619 May 2022 Taormina (Messina), Italy". Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 376-385. ISBN 978-1-6654-9956-9. DOI 10.1109/CCGrid54584.2022.00047.
ISBN978-1-6654-9956-9
Publisher versionhttps://ieeexplore.ieee.org/abstract/document/9826110
Collections
- Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [196]
- Computer Sciences - Ponències/Comunicacions de congressos [459]
- CAP - Grup de Computació d'Altes Prestacions - Ponències/Comunicacions de congressos [762]
- Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.773]
Files | Description | Size | Format | View |
---|---|---|---|---|
Scanflow-K8s Ag ... Clusters(cameraready).pdf | 1,109Mb | View/Open |