Show simple item record

dc.contributor.authorOrdonez-Apraez, Daniel
dc.contributor.authorAgudo Martínez, Antonio
dc.contributor.authorMoreno-Noguer, Francesc
dc.contributor.authorMartín Muñoz, Mario
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2022-07-13T10:49:25Z
dc.date.available2022-07-13T10:49:25Z
dc.date.issued2022
dc.identifier.citationOrdonez-Apraez, D. [et al.]. An adaptable approach to learn realistic legged locomotion without examples. A: IEEE International Conference on Robotics and Automation. "Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA)". 2022, p. 4671-4678. DOI 10.1109/ICRA46639.2022.9812441.
dc.identifier.otherhttps://arxiv.org/abs/2110.14998
dc.identifier.urihttp://hdl.handle.net/2117/370139
dc.description© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractLearning controllers that reproduce legged locomotion in nature has been a long-time goal in robotics and computer graphics. While yielding promising results, recent approaches are not yet flexible enough to be applicable to legged systems of different morphologies. This is partly because they often rely on precise motion capture references or elaborate learning environments that ensure the naturality of the emergent locomotion gaits but prevent generalization. This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference. Leveraging on the exploration capacities of Reinforcement Learning (RL), we learn a control policy that fills in the information gap between the template model and full-body dynamics required to maintain stable and periodic locomotion. The proposed approach can be applied to robots of different sizes and morphologies and adapted to any RL technique and control architecture. We present experimental results showing that even in a model-free setup and with a simple reactive control architecture, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot. And most importantly, this is achieved without using motion capture, strong constraints in the dynamics or kinematics of the robot, nor prescribing limb coordination. We provide supplemental videos for qualitative analysis of the naturality of the learned gaits.
dc.format.extent8 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.subject.lcshHuman locomotion
dc.subject.lcshComputer animation
dc.titleAn adaptable approach to learn realistic legged locomotion without examples
dc.typeConference report
dc.subject.lemacLocomoció humana
dc.subject.lemacAnimació per ordinador
dc.contributor.groupUniversitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.identifier.doi10.1109/ICRA46639.2022.9812441
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9812441
dc.rights.accessOpen Access
local.identifier.drac33759762
dc.description.versionPostprint (author's final draft)
local.citation.authorOrdonez-Apraez, D.; Agudo, A.; Moreno-Noguer, F.; Martin, M.
local.citation.contributorIEEE International Conference on Robotics and Automation
local.citation.publicationNameProceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA)
local.citation.startingPage4671
local.citation.endingPage4678


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record