Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.146 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MCIA - Motion Control and Industrial Applications Research Group
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MCIA - Motion Control and Industrial Applications Research Group
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial intelligence-based protection for smart grids

Thumbnail
View/Open
energies-15-04933.pdf (4,156Mb)
 
10.3390/en15134933
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/369973

Show full item record
Bakkar, MostafaMés informacióMés informació
Bogarra Rodríguez, SantiagoMés informacióMés informacióMés informació
Córcoles López, FelipeMés informacióMés informacióMés informació
Aboelhassan, Ahmed
Wang, Shuo
Iglesias, Javier
Document typeArticle
Defense date2022-07-05
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
Abstract
Lately, adequate protection strategies need to be developed when Microgrids (MGs) are connected to smart grids to prevent undesirable tripping. Conventional relay settings need to be adapted to changes in Distributed Generator (DG) penetrations or grid reconfigurations, which is a complicated task that can be solved efficiently using Artificial Intelligence (AI)-based protection. This paper compares and validates the difference between conventional protection (overcurrent and differential) strategies and a new strategy based on Artificial Neural Networks (ANNs), which have been shown as adequate protection, especially with reconfigurable smart grids. In addition, the limitations of the conventional protections are discussed. The AI protection is employed through the communication between all Protective Devices (PDs) in the grid, and a backup strategy that employs the communication among the PDs in the same line. This paper goes a step further to validate the protection strategies based on simulations using the MATLABTM platform and experimental results using a scaled grid. The AI-based protection method gave the best solution as it can be adapted for different grids with high accuracy and faster response than conventional protection, and without the need to change the protection settings. The scaled grid was designed for the smart grid to advocate the behavior of the protection strategies experimentally for both conventional and AI-based protections.
CitationBakkar, M. [et al.]. Artificial intelligence-based protection for smart grids. "Energies", 5 Juliol 2022, vol. 15, núm. 13, article 4933, p. 1-18. 
URIhttp://hdl.handle.net/2117/369973
DOI10.3390/en15134933
ISSN1996-1073
Publisher versionhttps://www.mdpi.com/1996-1073/15/13/4933
Collections
  • MCIA - Motion Control and Industrial Applications Research Group - Articles de revista [260]
  • QSE - Qualitat del Subministrament Elèctric - Articles de revista [78]
  • Departament d'Enginyeria Elèctrica - Articles de revista [986]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
energies-15-04933.pdf4,156MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina