dc.contributor.author | Mitchell, Sharon |
dc.contributor.author | Parés Pont, Ferran |
dc.contributor.author | Faust Akl, Dario |
dc.contributor.author | Collins, Sean |
dc.contributor.author | Kepaptsoglou, Demie |
dc.contributor.author | Ramasse, Quentin |
dc.contributor.author | Garcia Gasulla, Dario |
dc.contributor.author | Pérez Ramírez, Javier |
dc.contributor.author | López Alonso, Nuria |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2022-07-04T09:41:43Z |
dc.date.available | 2023-03-25T01:27:53Z |
dc.date.issued | 2022-03-25 |
dc.identifier.citation | Mitchell, S. [et al.]. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. "Journal of the American Chemical Society", 25 Març 2022, vol. 144, núm. 18, p. 8018-8029. |
dc.identifier.issn | 0002-7863 |
dc.identifier.uri | http://hdl.handle.net/2117/369468 |
dc.description.abstract | Single-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure–performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability. |
dc.description.sponsorship | S.M., D.F.A., J.P.-R., and N.L. acknowledge funding from NCCR Catalysis (180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. S.M.C. acknowledges support from a University Academic Fellowship at the University of Leeds and the Diamond Light Source, U.K. for access and support in the use of the electron Physical Science Imaging Centre (EM17997). SuperSTEM is the U.K. National Research Facility for Advanced Electron Microscopy, supported by the Engineering and Physical Sciences Research Council. |
dc.format.extent | 12 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject | Àrees temàtiques de la UPC::Enginyeria dels materials |
dc.subject.lcsh | Image analysis |
dc.subject.lcsh | Deep learning |
dc.subject.lcsh | Transmission electron microscopy |
dc.subject.other | Metals |
dc.subject.other | Imaging |
dc.subject.other | Materials |
dc.subject.other | Catalysts |
dc.subject.other | Platinum |
dc.title | Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy |
dc.type | Article |
dc.subject.lemac | Imatges -- Anàlisi |
dc.subject.lemac | Aprenentatge profund |
dc.subject.lemac | Microscòpia electrònica de transmissió |
dc.contributor.group | Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
dc.identifier.doi | 10.1021/jacs.1c12466 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://pubs.acs.org/doi/pdf/10.1021/jacs.1c12466 |
dc.rights.access | Open Access |
local.identifier.drac | 33224252 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Mitchell, S.; Parés, F.; Faust, D.; Collins, S.; Kepaptsoglou, D.; Ramasse, Q.; Garcia-Gasulla, D.; Pérez, J.; López, N. |
local.citation.publicationName | Journal of the American Chemical Society |
local.citation.volume | 144 |
local.citation.number | 18 |
local.citation.startingPage | 8018 |
local.citation.endingPage | 8029 |