Show simple item record

dc.contributor.authorMitchell, Sharon
dc.contributor.authorParés Pont, Ferran
dc.contributor.authorFaust Akl, Dario
dc.contributor.authorCollins, Sean
dc.contributor.authorKepaptsoglou, Demie
dc.contributor.authorRamasse, Quentin
dc.contributor.authorGarcia Gasulla, Dario
dc.contributor.authorPérez Ramírez, Javier
dc.contributor.authorLópez Alonso, Nuria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2022-07-04T09:41:43Z
dc.date.available2023-03-25T01:27:53Z
dc.date.issued2022-03-25
dc.identifier.citationMitchell, S. [et al.]. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. "Journal of the American Chemical Society", 25 Març 2022, vol. 144, núm. 18, p. 8018-8029.
dc.identifier.issn0002-7863
dc.identifier.urihttp://hdl.handle.net/2117/369468
dc.description.abstractSingle-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure–performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability.
dc.description.sponsorshipS.M., D.F.A., J.P.-R., and N.L. acknowledge funding from NCCR Catalysis (180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. S.M.C. acknowledges support from a University Academic Fellowship at the University of Leeds and the Diamond Light Source, U.K. for access and support in the use of the electron Physical Science Imaging Centre (EM17997). SuperSTEM is the U.K. National Research Facility for Advanced Electron Microscopy, supported by the Engineering and Physical Sciences Research Council.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshImage analysis
dc.subject.lcshDeep learning
dc.subject.lcshTransmission electron microscopy
dc.subject.otherMetals
dc.subject.otherImaging
dc.subject.otherMaterials
dc.subject.otherCatalysts
dc.subject.otherPlatinum
dc.titleAutomated image analysis for single-atom detection in catalytic materials by transmission electron microscopy
dc.typeArticle
dc.subject.lemacImatges -- Anàlisi
dc.subject.lemacAprenentatge profund
dc.subject.lemacMicroscòpia electrònica de transmissió
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.identifier.doi10.1021/jacs.1c12466
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c12466
dc.rights.accessOpen Access
local.identifier.drac33224252
dc.description.versionPostprint (author's final draft)
local.citation.authorMitchell, S.; Parés, F.; Faust, D.; Collins, S.; Kepaptsoglou, D.; Ramasse, Q.; Garcia-Gasulla, D.; Pérez, J.; López, N.
local.citation.publicationNameJournal of the American Chemical Society
local.citation.volume144
local.citation.number18
local.citation.startingPage8018
local.citation.endingPage8029


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record