Show simple item record

dc.contributor.authorComa Puig, Bernat
dc.contributor.authorCarmona Vargas, Josep
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2022-06-30T09:21:43Z
dc.date.available2022-06-30T09:21:43Z
dc.date.issued2021
dc.identifier.citationComa, B.; Carmona, J. A human-in-the-loop approach based on explainability to improve NTL detection. A: IEEE International Conference on Data Mining Workshops. "21st IEEE International Conference on Data Mining Workshops: ICDMW 2021: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 943-950. ISBN 978-1-6654-2427-1. DOI 10.1109/ICDMW53433.2021.00123.
dc.identifier.isbn978-1-6654-2427-1
dc.identifier.otherhttps://arxiv.org/abs/2009.13437
dc.identifier.urihttp://hdl.handle.net/2117/369351
dc.description.abstractImplementing systems based on Machine Learning to detect fraud and other Non-Technical Losses (NTL) is challenging: the data available is biased, and the algorithms currently used are black-boxes that cannot be either easily trusted or understood by stakeholders. This work explains our human-in-the-loop approach to mitigate these problems in a real system that uses a supervised model to detect Non-Technical Losses (NTL) for an international utility company from Spain. This approach exploits human knowledge (e.g. from the data scientists or the company's stakeholders) and the information provided by explanatory methods to guide the system during the training process. This simple, efficient method that can be easily implemented in other industrial projects is tested in a real dataset and the results show that the derived prediction model is better in terms of accuracy, interpretability, robustness and flexibility.
dc.format.extent8 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshMachine learning
dc.subject.otherMachine learning
dc.titleA human-in-the-loop approach based on explainability to improve NTL detection
dc.typeConference report
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
dc.identifier.doi10.1109/ICDMW53433.2021.00123
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9679878
dc.rights.accessOpen Access
local.identifier.drac32492038
dc.description.versionPostprint (author's final draft)
local.citation.authorComa, B.; Carmona, J.
local.citation.contributorIEEE International Conference on Data Mining Workshops
local.citation.publicationName21st IEEE International Conference on Data Mining Workshops: ICDMW 2021: proceedings
local.citation.startingPage943
local.citation.endingPage950


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record