Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A human-in-the-loop approach based on explainability to improve NTL detection

Thumbnail
View/Open
2009.13437.pdf (674,5Kb)
Share:
 
 
10.1109/ICDMW53433.2021.00123
 
  View Usage Statistics
Cita com:
hdl:2117/369351

Show full item record
Coma Puig, BernatMés informacióMés informacióMés informació
Carmona Vargas, JosepMés informacióMés informació
Document typeConference report
Defense date2021
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Implementing systems based on Machine Learning to detect fraud and other Non-Technical Losses (NTL) is challenging: the data available is biased, and the algorithms currently used are black-boxes that cannot be either easily trusted or understood by stakeholders. This work explains our human-in-the-loop approach to mitigate these problems in a real system that uses a supervised model to detect Non-Technical Losses (NTL) for an international utility company from Spain. This approach exploits human knowledge (e.g. from the data scientists or the company's stakeholders) and the information provided by explanatory methods to guide the system during the training process. This simple, efficient method that can be easily implemented in other industrial projects is tested in a real dataset and the results show that the derived prediction model is better in terms of accuracy, interpretability, robustness and flexibility.
CitationComa, B.; Carmona, J. A human-in-the-loop approach based on explainability to improve NTL detection. A: IEEE International Conference on Data Mining Workshops. "21st IEEE International Conference on Data Mining Workshops: ICDMW 2021: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 943-950. ISBN 978-1-6654-2427-1. DOI 10.1109/ICDMW53433.2021.00123. 
URIhttp://hdl.handle.net/2117/369351
DOI10.1109/ICDMW53433.2021.00123
ISBN978-1-6654-2427-1
Publisher versionhttps://ieeexplore.ieee.org/document/9679878
Other identifiershttps://arxiv.org/abs/2009.13437
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.231]
  • ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals - Ponències/Comunicacions de congressos [319]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2009.13437.pdf674,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina