Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.158 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating edit-distance sequence alignment on GPU using the wavefront algorithm

Thumbnail
View/Open
Accelerating_Edit-Distance_Sequence_Alignment_on_GPU_Using_the_Wavefront_Algorithm.pdf (1,244Mb)
 
10.1109/ACCESS.2022.3182714
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/369035

Show full item record
Aguado Puig, QuimMés informacióMés informació
Marco Sola, SantiagoMés informacióMés informació
Moure López, Juan Carlos
Castells Rufas, David
Álvarez Martí, LlucMés informació
Espinosa Morales, Antonio
Moretó Planas, MiquelMés informacióMés informacióMés informació
Document typeArticle
Defense date2022-06-10
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectCOMPUTACION AVANZADA PARA LOS RETOS DE LA SOCIEDAD DIGITAL-UAB (AEI-PID2020-113614RB-C21)
COMPUTACION DE ALTAS PRESTACIONES VII (MINECO-TIN2015-65316-P)
DeepHealth - Deep-Learning and HPC to Boost Biomedical Applications for Health (EC-H2020-825111)
Abstract
Sequence alignment remains a fundamental problem with practical applications ranging from pattern recognition to computational biology. Traditional algorithms based on dynamic programming are hard to parallelize, require significant amounts of memory, and fail to scale for large inputs. This work presents eWFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute the exact edit-distance sequence alignment based on the wavefront alignment algorithm (WFA). This approach exploits the similarities between the input sequences to accelerate the alignment process while requiring less memory than other algorithms. Our implementation takes full advantage of the massive parallel capabilities of modern GPUs to accelerate the alignment process. In addition, we propose a succinct representation of the alignment data that successfully reduces the overall amount of memory required, allowing the exploitation of the fast shared memory of a GPU. Our results show that our GPU implementation outperforms by 3- 9× the baseline edit-distance WFA implementation running on a 20 core machine. As a result, eWFA-GPU is up to 265 times faster than state-of-the-art CPU implementation, and up to 56 times faster than state-of-the-art GPU implementations.
CitationAguado, Q. [et al.]. Accelerating edit-distance sequence alignment on GPU using the wavefront algorithm. "IEEE access", 10 Juny 2022, vol. 10, p. 63782-63796. 
URIhttp://hdl.handle.net/2117/369035
DOI10.1109/ACCESS.2022.3182714
ISSN2169-3536
Publisher versionhttps://ieeexplore.ieee.org/document/9795023
Collections
  • Computer Sciences - Articles de revista [362]
  • Departament d'Arquitectura de Computadors - Articles de revista [1.143]
  • CAP - Grup de Computació d'Altes Prestacions - Articles de revista [382]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Accelerating_Ed ... he_Wavefront_Algorithm.pdf1,244MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina