Show simple item record

dc.contributor.authorBall, Simeon Michael
dc.contributor.authorVilar Algueró, Ricard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
dc.date.accessioned2022-06-15T11:48:48Z
dc.date.available2022-06-15T11:48:48Z
dc.date.issued2022-02-09
dc.identifier.citationBall, S.; Vilar, R. Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal. "IEEE transactions on information theory", 9 Febrer 2022, vol. 68, núm. 6, p. 3796-3805.
dc.identifier.issn1557-9654
dc.identifier.urihttp://hdl.handle.net/2117/368495
dc.description© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
dc.description.abstractWe prove that there is a Hermitian self-orthogonal k -dimensional truncated generalised Reed-Solomon code of length n¿q2 over Fq2 if and only if there is a polynomial g¿Fq2 of degree at most (q-k)q-1 such that g+gq has q2-n distinct zeros. This allows us to determine the smallest n for which there is a Hermitian self-orthogonal k -dimensional truncated generalised Reed-Solomon code of length n over Fq2 , verifying a conjecture of Grassl and Rötteler. We also provide examples of Hermitian self-orthogonal k -dimensional generalised Reed-Solomon codes of length q2+1 over Fq2 , for k=q-1 and q an odd power of two.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshError-correcting codes (Information theory)
dc.subject.otherCodes
dc.subject.otherReed-Solomon codes
dc.subject.otherLinear codes
dc.subject.otherCodecs
dc.subject.otherTechnological innovation
dc.subject.otherStandards
dc.subject.otherRain
dc.titleDetermining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal
dc.typeArticle
dc.subject.lemacInformació, Teoria de la
dc.subject.lemacCodificació, Teoria de la
dc.contributor.groupUniversitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
dc.identifier.doi10.1109/TIT.2022.3150277
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9709260
dc.rights.accessOpen Access
local.identifier.drac32835772
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82166-P/ES/COMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA/
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113082GB-I00/ES/COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES/
local.citation.authorBall, S.; Vilar, R.
local.citation.publicationNameIEEE transactions on information theory
local.citation.volume68
local.citation.number6
local.citation.startingPage3796
local.citation.endingPage3805


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record