Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

63.188 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart Pattern V2I Handover Based on Machine Learning Vehicle Classification

Thumbnail
View/Open
Master's_Thesis_Bharath.pdf (2,024Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/368151

Show full item record
Ganugapanta, Bharath Reddy
Tutor / directorJofre Roca, LluísMés informacióMés informacióMés informació
Document typeMaster thesis
Date2021-07-27
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The mmwave frequencies will be widely used in future vehicular communications. At these frequencies, the radio channel becomes much more vulnerable to slight changes in the environment like motions of the device, reflections or blockage. In high mobility vehicular communications the rapidly changing vehicle environments and the large overheads due to frequent beam training are the critical disadvantages in developing these systems at mmwave frequencies. Hence, smart beam management procedures are desired to establish and maintain the radio channels. In this thesis, we propose that using the positions and respective velocities of the vehicles in the dynamic selection of the beam pair, and then adapting to the changing environments using machine learning algorithms, can improve both network performance and communication stability in high mobility vehicular communications.
SubjectsAntennas (Electronics), Mobile communication systems, Antenes (Electrònica), Comunicacions mòbils, Sistemes de
DegreeMÀSTER UNIVERSITARI EN ENGINYERIA DE TELECOMUNICACIÓ (Pla 2013)
URIhttp://hdl.handle.net/2117/368151
Collections
  • Màsters oficials - Master's degree in Telecommunications Engineering (MET) [357]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Master's_Thesis_Bharath.pdf2,024MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina