Show simple item record

dc.contributorVilaplana Besler, Verónica
dc.contributorPorta Pleite, Josep Maria
dc.contributor.authorRamírez i Márquez, Alex
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2022-06-08T08:35:22Z
dc.date.available2022-06-08T08:35:22Z
dc.date.issued2022-01-24
dc.identifier.urihttp://hdl.handle.net/2117/368133
dc.description.abstractDeficiencies in the structure of collagen VI are a common cause of neuromuscular diseases. Such diseases typically require assisted ventilation and result in a severely reduced life expectancy. Collagen VI structural defects are related to mutations of three main genes. Currently the CRISPR technology offers a possibility to correct the wrong genes. However, the regulatory agencies would not approve any treatment without an objective methodology to evaluate its effectiveness. This project aims at providing a computer vision solution to evaluate the state of patients with collagen VI deficiencies. The idea is to provide objective metrics of the patient state from images of muscular tissue obtained with a confocal microscope. Currently some tools are available to this end, but only for low resolution 2D images. This project proposes to extend this previous work to the analysis of high-resolution 3D stacks of images. The project involves the development of classical computer vision tools to derive relevant features from the stacks of images and the use of classification tools to generate an overall evaluation of each patient. This analysis will be complemented with the development of a solution based on the use of a convolutional neural network. To this end, data augmentation techniques will be of primary importance since collagen VI-related problems are rare diseases and, thus, there is a severe lack of training data.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsS'autoritza la difusió de l'obra mitjançant la llicència Creative Commons o similar 'Reconeixement-NoComercial- SenseObraDerivada'
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshComputer vision
dc.subject.lcshDeep learning (Machine learning)
dc.subject.lcshNeural networks (Computer science)
dc.subject.lcshCollagen
dc.subject.otherComputer Vision
dc.subject.otherDeep Learning
dc.subject.otherConvolutional Neural Networks
dc.subject.otherCollagen VI
dc.subject.otherNeuromuscular diseases
dc.subject.otherComputer-Aided Diagnosis
dc.titleComputer vision tools for the automatic evaluation of collagen VI deficiencies
dc.typeMaster thesis
dc.subject.lemacVisió per ordinador
dc.subject.lemacAprenentatge profund
dc.subject.lemacXarxes neuronals (Informàtica)
dc.subject.lemacCol·lagen
dc.identifier.slugETSETB-230.165312
dc.rights.accessOpen Access
dc.date.updated2022-06-01T05:50:34Z
dc.audience.educationlevelMàster
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record