Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.772 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Asymmetric HMMs for online ball-bearing health assessments

Thumbnail
View/Open
TII_Special_Issue.pdf (3,263Mb)
Share:
 
 
10.1109/JIOT.2022.3173064
 
  View Usage Statistics
Cita com:
hdl:2117/367523

Show full item record
Puerto Santana, Carlos
Bielza Lozoya, Concha
Díaz Rozo, Javier
Ramírez Gargallo, Guillem
Mantovani, FilippoMés informació
Virumbrales, Gaizka
Labarta Mancho, Jesús JoséMés informacióMés informacióMés informació
Larrañaga Mugica, Pedro
Document typeArticle
Defense date2022-10-15
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectIoTwins - Distributed Digital Twins for industrial SMEs: a big-data platform (EC-H2020-857191)
Abstract
The degradation of critical components inside large industrial assets, such as ball-bearings, has a negative impact on production facilities, reducing the availability of assets due to an unexpectedly high failure rate. Machine learning- based monitoring systems can estimate the remaining useful life (RUL) of ball-bearings, reducing the downtime by early failure detection. However, traditional approaches for predictive systems require run-to-failure (RTF) data as training data, which in real scenarios can be scarce and expensive to obtain as the expected useful life could be measured in years. Therefore, to overcome the need of RTF, we propose a new methodology based on online novelty detection and asymmetrical hidden Markov models (As-HMM) to work out the health assessment. This new methodology does not require previous RTF data and can adapt to natural degradation of mechanical components over time in data-stream and online environments. As the system is designed to work online within the electrical cabinet of machines it has to be deployed using embedded electronics. Therefore, a performance analysis of As-HMM is presented to detect the strengths and critical points of the algorithm. To validate our approach, we use real life ball-bearing data-sets and compare our methodology with other methodologies where no RTF data is needed and check the advantages in RUL prediction and health monitoring. As a result, we showcase a complete end-to-end solution from the sensor to actionable insights regarding RUL estimation towards maintenance application in real industrial environments.
CitationPuerto, C. [et al.]. Asymmetric HMMs for online ball-bearing health assessments. "IEEE internet of things journal", 15 octubre 2022, vol. 9, núm. 20, p. 20160-20177. 
URIhttp://hdl.handle.net/2117/367523
DOI10.1109/JIOT.2022.3173064
ISSN2327-4662
Publisher versionhttps://ieeexplore.ieee.org/abstract/document/9770192
Collections
  • Computer Sciences - Articles de revista [277]
  • Departament d'Arquitectura de Computadors - Articles de revista [967]
  • CAP - Grup de Computació d'Altes Prestacions - Articles de revista [380]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TII_Special_Issue.pdf3,263MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina