Numerical study of the influence of the interaction distance, the polymeric strips pre-tensioning, and the soil–polymeric interaction on the performance of back-to-back reinforced soil walls

Cita com:
hdl:2117/367460
Document typeArticle
Defense date2022-02
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution 3.0 Spain
Abstract
This study describes the results of a series of 2D finite element method (FEM) numerical models of 6 m high back-to-back reinforced soil walls using the geotechnical software PLAXIS. These structures are used to support embankments, especially for bridge abutment approaches. The quantitative influence of problem geometry, strip pre-tensioning, strip type, and surcharging on horizontal displacements, development of soil shear and plastic zones, lateral earth pressure, and reinforcement loads is presented. The numerical results demonstrate how this type of reinforced soil walls perform jointly at a certain distance of interaction between the two opposite walls. The walls of the two opposing sides clearly interact with each other when they are close enough and with an overlapping reinforcement layout. Pre-tensioning load can contribute to achieving vertical wall-facing alignment at the end of construction. Using perforated/holed strips, the tensile loads at the end of construction were reduced by about 30% due to the improved polymeric–soil interface strength and stiffness.
CitationBrouthen, A.; Houhou, M.N.; Damians, I.P. Numerical study of the influence of the interaction distance, the polymeric strips pre-tensioning, and the soil–polymeric interaction on the performance of back-to-back reinforced soil walls. "Infrastructures", Febrer 2022, vol. 7, núm. 2, p. 22:1-22:26.
ISSN2412-3811
Publisher versionhttps://www.mdpi.com/2412-3811/7/2/22/htm
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
infrastructures-1538221-0223updated.pdf | 15,99Mb | View/Open |