Phase distribution and properties identification of heterogeneous materials: a data-driven approach
View/Open
Valdesetal2022.pdf (2,898Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/367374
Document typeArticle
Defense date2022-02-15
Rights accessRestricted access - publisher's policy
(embargoed until 2024-02-15)
Abstract
This paper presents a new methodology to extend the Data-Driven Identification (DDI) to heterogeneous samples made of multiple elastic materials. By using the Correspondence Analysis (CA) technique to post-process DDI, we are able to identify multiple material databases representative of the material behavior of each phase. Simultaneously, we localize the different phases (matrix and inclusions) in the sample. For different contrasts between phases, the method is tested on synthetically generated data and a parametric study is performed. Furthermore, we show that it is possible to iterate between DDI and CA in order to improve the method’s predictions when it is limited by scarce input data. In all the cases studied, the methodology proves to be effective for estimating stresses, as well as for identifying the different phases in the sample.
Description
© 2022 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationValdés, G. [et al.]. Phase distribution and properties identification of heterogeneous materials: a data-driven approach. "Computer methods in applied mechanics and engineering", 15 Febrer 2022, vol. 390, p. 114354:1-114354:18.
ISSN0045-7825
Files | Description | Size | Format | View |
---|---|---|---|---|
Valdesetal2022.pdf![]() | 2,898Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International