Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.786 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D Human pose, shape and texture from low-resolution images and videos

Thumbnail
View/Open
2506-3D-Human-Pose,-Shape-and-Texture-from-Low-Resolution-Images-and-Videos.pdf (3,584Mb)
 
10.1109/TPAMI.2021.3070002
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/367104

Show full item record
Xu, Xiangyu
Chen, Hao
Moreno-Noguer, FrancescMés informació
Jeni, Lázló
De La Torre, Fernando
Document typeArticle
Defense date2022
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
3D human pose and shape estimation from monocular images has been an active research area in computer vision. Existing deep learning methods for this task rely on high-resolution input, which however, is not always available in many scenarios such as video surveillance and sports broadcasting. Two common approaches to deal with low-resolution images are applying super-resolution techniques to the input, which may result in unpleasant artifacts, or simply training one model for each resolution, which is impractical in many realistic applications. To address the above issues, this paper proposes a novel algorithm called RSC-Net, which consists of a Resolution-aware network, a Self-supervision loss, and a Contrastive learning scheme. The proposed method is able to learn 3D body pose and shape across different resolutions with one single model. The self-supervision loss enforces scale-consistency of the output, and the contrastive learning scheme enforces scale-consistency of the deep features. We show that both these new losses provide robustness when learning in a weakly-supervised manner. Moreover, we extend the RSC-Net to handle low-resolution videos and apply it to reconstruct textured 3D pedestrians from low-resolution input. Extensive experiments demonstrate that the RSC-Net can achieve consistently better results than the state-of-the-art methods for challenging low-resolution images.
Description
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
CitationXu, X. [et al.]. 3D Human pose, shape and texture from low-resolution images and videos. "IEEE transactions on pattern analysis and machine intelligence", 2022, p. 1. 
URIhttp://hdl.handle.net/2117/367104
DOI10.1109/TPAMI.2021.3070002
ISSN0162-8828
Publisher versionhttps://ieeexplore.ieee.org/document/9392295
Collections
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Articles de revista [176]
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Articles de revista [399]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2506-3D-Human-P ... tion-Images-and-Videos.pdf3,584MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina