Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.616 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CTTC - Centre Tecnològic de la Transferència de Calor
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CTTC - Centre Tecnològic de la Transferència de Calor
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NUMA-Aware Strategies for the Heterogeneous Execution of SPMV on Modern Supercomputers

Thumbnail
View/Open
Draft_Content_721176048p5653.pdf (256,0Kb)
 
10.23967/wccm-eccomas.2020.223
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/366919

Show full item record
Álvarez Farré, XavierMés informacióMés informació
Gorobets, Andrei
Trias Miquel, Francesc XavierMés informacióMés informacióMés informació
Oliva Llena, AsensioMés informacióMés informacióMés informació
Document typeConference report
Defense date2021
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 3.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 3.0 Generic
ProjectALGORITMOS NUMERICOS AVANZADOS PARA LA MEJORA DE LA EFICIENCIA ENERGETICA EN LOS SECTORES EOLICO Y SOLAR-TERMICO: DESARROLLO%2FADAPTACION A NUEVAS ARQUITECTURAS COMPUTACIONALES (AEI-ENE2017-88697-R)
Abstract
The sparse matrix-vector product is a widespread operation amongst the scientific computing community. It represents the dominant computational cost in many large-scale simulations relying on iterative methods, and its performance is sensitive to the sparse pattern, the storage format, and kernel implementation, and the target computing architecture. In this work, we are devoted to the efficient execution of the sparse matrix-vector product on (potentially hybrid) modern supercomputers with non-uniform memory access configurations. A hierarchical parallel implementation is proposed to minimize the number of processes participating in distributed-memory parallelization. As a result, a single process per computing node is enough to engage all its hardware and ensure efficient memory access on manycore platforms. The benefits of this approach have been demonstrated on up to 9,600 cores of MareNostrum 4 supercomputer, at Barcelona Supercomputing Center.
CitationAlvarez, X. [et al.]. NUMA-Aware Strategies for the Heterogeneous Execution of SPMV on Modern Supercomputers. A: European Congress on Computational Methods in Applied Sciences and Engineering. "14th WCCM-ECCOMAS Congress 2020: collection of papers presented at the 14th edition of the WCCM-ECCOMAS, virtual congress, January, 11-15, 2021". 2021, p. 1-10. ISBN 978-84-121101-7-3. DOI 10.23967/wccm-eccomas.2020.223. 
URIhttp://hdl.handle.net/2117/366919
DOI10.23967/wccm-eccomas.2020.223
ISBN978-84-121101-7-3
Other identifiershttps://www.scipedia.com/public/Alvarez-Farre_et_al_2021a
Collections
  • CTTC - Centre Tecnològic de la Transferència de Calor - Ponències/Comunicacions de congressos [278]
  • Departament de Màquines i Motors Tèrmics - Ponències/Comunicacions de congressos [431]
  • Doctorat en Enginyeria Tèrmica - Ponències/Comunicacions de congressos [44]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Draft_Content_721176048p5653.pdf256,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina