Show simple item record

dc.contributor.authorRomero Ben, Luis
dc.contributor.authorBlesa Izquierdo, Joaquim
dc.contributor.authorPuig Cayuela, Vicenç
dc.contributor.authorCembrano Gennari, Gabriela
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.date.accessioned2022-05-03T11:14:57Z
dc.date.available2023-04-01T00:30:58Z
dc.date.issued2022
dc.identifier.citationRomero, L. [et al.]. Clustering-learning approach to the localization of leaks in water distribution networks. "Journal of water resources planning and management (ASCE)", 2022, vol. 148, núm. 4, p. 04022003:1-04022003:11.
dc.identifier.issn0733-9496
dc.identifier.urihttp://hdl.handle.net/2117/366702
dc.description.abstractLeak detection and localization in water distribution networks (WDNs) is of great significance for water utilities. This paper proposes a leak localization method that requires hydraulic measurements and structural information of the network. It is composed by an image encoding procedure and a recursive clustering/learning approach. Image encoding is carried out using Gramian Angular Field (GAF) on pressure measurements to obtain images for the learning phase (for all possible leak scenarios). The recursive clustering/learning approach divides the considered region of the network into two sets of nodes using Graph Agglomerative Clustering (GAC), and trains a deep neural network (DNN) to discern the location of each leak between the two possible clusters, using each one of them as inputs to future iterations of the process. The achieved set of DNNs is hierarchically organized to generate a classification tree. Actual measurements from a leak event occurred in a real network are used to assess the approach, comparing its performance with another state-of-the-art technique, and demonstrating the capability of the method to regulate the area of localization depending on the depth of the route through the tree.
dc.description.sponsorshipThe authors want to thank the Spanish national project “DEOCS (DPI2016-76493-C3-3-R)” project (which is finished nowadays) by its continuation: “L-BEST Project (PID2020-115905RB-C21) funded by MCIN/ AEI /10.13039/501100011033” and the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656). Joaquim Blesa acknowledges the support from the Serra Húnter program
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshLeak detectors
dc.subject.lcshWater -- Distribution
dc.subject.otherWater distribution network
dc.subject.otherLeak localization
dc.subject.otherDeep learning
dc.subject.otherGraph-based clustering
dc.subject.otherReal-world network
dc.titleClustering-learning approach to the localization of leaks in water distribution networks
dc.typeArticle
dc.subject.lemacDetectors de fuites
dc.subject.lemacAigua -- Distribució
dc.contributor.groupUniversitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
dc.identifier.doi10.1061/(ASCE)WR.1943-5452.0001527
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001527
dc.rights.accessOpen Access
local.identifier.drac32566510
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/2PE/MDM-2016-0656
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/DPI2016-76493-C3-3-R
local.citation.authorRomero, L.; Blesa, J.; Puig, V.; Cembrano, M.
local.citation.publicationNameJournal of water resources planning and management (ASCE)
local.citation.volume148
local.citation.number4
local.citation.startingPage04022003:1
local.citation.endingPage04022003:11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record