Show simple item record

dc.contributor.authorJiménez Urroz, Jorge
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2022-04-12T09:49:56Z
dc.date.issued2021-12-30
dc.identifier.citationJimenez, J. Every integer can be written as a square plus a squarefree. "Expositiones mathematicae", 30 Desembre 2021,
dc.identifier.issn0723-0869
dc.identifier.otherhttps://arxiv.org/abs/2010.15580
dc.identifier.urihttp://hdl.handle.net/2117/365735
dc.description© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractIn the paper we can prove that every integer can be written as the sum of two integers, one perfect square and one squarefree. We also establish the asymptotic formula for the number of representations of an integer in this form. The result is deeply related with the divisor function. In the course of our study we get an independent result about it. Concretely we are able to deduce a new upper bound for the divisor function fully explicit.
dc.language.isoeng
dc.rights©2021. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
dc.subject.lcshMultiplicity (Mathematics)
dc.subject.lcshPartitions (Mathematics)
dc.subject.otherAdditive number theory
dc.subject.otherArithmetic functions
dc.subject.otherDivisor function
dc.titleEvery integer can be written as a square plus a squarefree
dc.typeArticle
dc.subject.lemacNombres, Teoria dels
dc.subject.lemacParticions (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres
dc.identifier.doi10.1016/j.exmath.2021.12.002
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::11 Number theory::11N Multiplicative number theory
dc.subject.amsClassificació AMS::11 Number theory::11P Additive number theory; partitions
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0723086921000748
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac32580219
dc.description.versionPostprint (author's final draft)
dc.date.lift2023-12-30
local.citation.authorJimenez, J.
local.citation.publicationNameExpositiones mathematicae


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record