Every integer can be written as a square plus a squarefree
View/Open
2010.15580.pdf (188,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/365735
Document typeArticle
Defense date2021-12-30
Rights accessRestricted access - publisher's policy
(embargoed until 2023-12-30)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
In the paper we can prove that every integer can be written as the sum of two integers, one perfect square and one squarefree. We also establish the asymptotic formula for the number of representations of an integer in this form. The result is deeply related with the divisor function. In the course of our study we get an independent result about it. Concretely we are able to deduce a new upper bound for the divisor function fully explicit.
Description
© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationJimenez, J. Every integer can be written as a square plus a squarefree. "Expositiones mathematicae", 30 Desembre 2021,
ISSN0723-0869
Other identifiershttps://arxiv.org/abs/2010.15580
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
2010.15580.pdf![]() | 188,9Kb | Restricted access |