Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

56.688 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Looking at Euler flows through a contact mirror: universality and undecidability

Thumbnail
View/Open
template-8ecmV9.pdf (488,6Kb)
Share:
 
 
10.48550/arXiv.2107.09471
 
  View Usage Statistics
Cita com:
hdl:2117/365642

Show full item record
Miranda Galcerán, EvaMés informacióMés informacióMés informació
Peralta-Salas, Daniel
Cardona, Robert
Document typeResearch report
Defense date2022-07-08
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold is governed by the Euler equations. In recent papers [5, 6, 7, 8] several unknown facets of the Euler flows have been discovered, including universality properties of the stationary solutions to the Euler equations. The study of these universality features was suggested by Tao as a novel way to address the problem of global existence for Euler and Navier-Stokes [28]. Universality of the Euler equations was proved in [7] for stationary solutions using a contact mirror which reflects a Beltrami flow as a Reeb vector field. This contact mirror permits the use of advanced geometric techniques in fluid dynamics. On the other hand, motivated by Tao’s approach relating Turing machines to Navier-Stokes equations, a Turing complete stationary Euler solution on a Riemannian 3-dimensional sphere was constructed in [8]. Since the Turing completeness of a vector field can be characterized in terms of the halting problem, which is known to be undecidable [30], a striking consequence of this fact is that a Turing complete Euler flow exhibits undecidable particle paths [8]. In this article, we give a panoramic overview of this fascinating subject, and go one step further in investigating the undecidability of different dynamical properties of Turing complete flows. In particular, we show that variations of [8] allow us to construct a stationary Euler flow of Beltrami type (and, via the contact mirror, a Reeb vector field) for which it is undecidable to determine whether its orbits through an explicit set of points are periodic
CitationMiranda, E.; Peralta-Salas, D.; Cardona, R. Looking at Euler flows through a contact mirror: universality and undecidability. 2022. DOI 10.48550/arXiv.2107.09471. 
URIhttp://hdl.handle.net/2117/365642
DOI10.48550/arXiv.2107.09471
Other identifiershttps://arxiv.org/abs/2107.09471
Collections
  • Departament de Matemàtiques - Reports de recerca [384]
  • GEOMVAP - Geometria de Varietats i Aplicacions - Reports de recerca [46]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
template-8ecmV9.pdf488,6KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina