Turing universality of the incompressible Euler equations and a conjecture of Moore

View/Open
Cita com:
hdl:2117/365194
Document typeArticle
Defense date2021-08-24
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectGEOMETRIA Y TOPOLOGIA DE VARIEDADES, ALGEBRA Y APLICACIONES (MINECO-MTM2015-69135-P)
GEOMETRIA, ALGEBRA, TOPOLOGIA Y APLICACIONES MULTIDISCIPLINARES (AEI-PID2019-103849GB-I00)
GEOMETRIA, ALGEBRA, TOPOLOGIA Y APLICACIONES MULTIDISCIPLINARES (AEI-PID2019-103849GB-I00)
Abstract
In this article, we construct a compact Riemannian manifold of high dimension on which the time-dependent Euler equations are Turing complete. More precisely, the halting of any Turing machine with a given input is equivalent to a certain global solution of the Euler equations entering a certain open set in the space of divergence-free vector fields. In particular, this implies the undecidability of whether a solution to the Euler equations with an initial datum will reach a certain open set or not in the space of divergence-free fields. This result goes one step further in Tao’s programme to study the blow-up problem for the Euler and Navier–Stokes equations using fluid computers. As a remarkable spin-off, our method of proof allows us to give a counterexample to a conjecture of Moore dating back to 1998 on the non-existence of analytic maps on compact manifolds that are Turing complete.
CitationCardona, R.; Miranda, E.; Peralta-Salas, D. Turing universality of the incompressible Euler equations and a conjecture of Moore. "International mathematics research notices", 24 Agost 2021, vol. 22, núm. 22, p. 18092-18109.
ISSN1073-7928
Publisher versionhttps://academic.oup.com/imrn
Files | Description | Size | Format | View |
---|---|---|---|---|
Euler_TuringFINAL.pdf | 300,2Kb | View/Open |