Show simple item record

dc.contributor.authorSinpetru, Luciana A.
dc.contributor.authorCrisp, Nicholas H.
dc.contributor.authorRoberts, Peter C.E
dc.contributor.authorSulliotti-Linner, Valeria
dc.contributor.authorHanessian, Virginia
dc.contributor.authorHerdrichd, Georg H.
dc.contributor.authorRomano, Francesco
dc.contributor.authorGarcía-Almiñana, Daniel
dc.contributor.authorRodríguez Donaire, Silvia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Organització d'Empreses
dc.date.accessioned2022-04-01T06:37:21Z
dc.date.available2024-03-01T01:30:13Z
dc.date.issued2022-06
dc.identifier.citationSinpetru, L. [et al.]. ADBSat: Verification and validation of a novel panel method for quick aerodynamic analysis of satellites. "Computer physics communications", Juny 2022, vol. 275, p. 108327:1-108327:10.
dc.identifier.issn0010-4655
dc.identifier.otherhttps://arxiv.org/abs/2110.06118
dc.identifier.urihttp://hdl.handle.net/2117/365133
dc.description.abstractWe present the validation of ADBSat, a novel implementation of the panel method including a fast pseudo-shading algorithm, that can quickly and accurately determine the forces and torques on satellites in free-molecular flow. Our main method of validation is comparing test cases between ADBSat, the current de facto standard of direct simulation Monte Carlo (DSMC), and published literature. ADBSat exhibits a significantly shorter runtime than DSMC and performs well, except where deep concavities are present in the satellite models. The shading algorithm also experiences problems when a large proportion of the satellite surface area is oriented parallel to the flow, but this can be mitigated by examining the body at small angles to this configuration (± 0.1°). We recommend that an error interval on ADBSat outputs of up to 3% is adopted. Therefore, ADBSat is a suitable tool for quickly determining the aerodynamic characteristics of a wide range of satellite geometries in different environmental conditions in VLEO. It can also be used in a complementary manner to identify cases that warrant further investigation using other numerical-based methods.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 4.0
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshArtificial satellites -- Aerodynamics
dc.subject.lcshMonte Carlo method
dc.subject.otherPanel method
dc.subject.otherFree molecular flow
dc.subject.otherOrbital aerodynamics
dc.subject.otherSatellite drag
dc.subject.otherSoftware validation
dc.subject.otherDirect simulation Monte Carlo
dc.titleADBSat: Verification and validation of a novel panel method for quick aerodynamic analysis of satellites
dc.typeArticle
dc.subject.lemacSatèl·lits artificials -- Aerodinàmica
dc.subject.lemacMontecarlo, Mètode de
dc.contributor.groupUniversitat Politècnica de Catalunya. TUAREG - Turbulence and Aerodynamics in Mechanical and Aerospace Engineering Research Group
dc.identifier.doi10.1016/j.cpc.2022.108327
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0010465522000455
dc.rights.accessOpen Access
local.identifier.drac32834939
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/737183/EU/DISCOVERER – DISruptive teChnOlogies for VERy low Earth oRbit platforms/DISCOVERER
local.citation.authorSinpetru, L.; Crisp , N.; Roberts, P.; Sulliotti-Linner, V.; Hanessian, V.; Herdrichd, G.; Romano, F.; Garcia-Almiñana, Daniel; Rodriguez-Donaire, S.
local.citation.publicationNameComputer physics communications
local.citation.volume275
local.citation.startingPage108327:1
local.citation.endingPage108327:10
dc.description.sdgObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record