Show simple item record

dc.contributor.authorWang, Yongjie
dc.contributor.authorKavanagh, Seán R.
dc.contributor.authorBurgués-Ceballos, Ignasi
dc.contributor.authorWalsh, Aron
dc.contributor.authorScanlon, David O.
dc.contributor.authorKonstantatos, Gerasimos
dc.date.accessioned2022-03-30T10:04:02Z
dc.date.available2022-07-14T00:28:39Z
dc.date.issued2022-02-14
dc.identifier.citationWang, Y. [et al.]. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. "Nature Photonics", 14 Febrer 2022, vol. 16, p. 235-241.
dc.identifier.urihttp://hdl.handle.net/2117/365008
dc.description.abstractStrong optical absorption by a semiconductor is a highly desirable property for many optoelectronic and photovoltaic applications. The optimal thickness of a semiconductor absorber is primarily determined by its absorption coefficient. To date, this parameter has been considered as a fundamental material property, and efforts to realize thinner photovoltaics have relied on light-trapping structures that add complexity and cost. Here we demonstrate that engineering cation disorder in a ternary chalcogenide semiconductor leads to considerable absorption increase due to enhancement of the optical transition matrix elements. We show that cation-disorder-engineered AgBiS2 colloidal nanocrystals offer an absorption coefficient that is higher than other photovoltaic materials, enabling highly efficient extremely thin absorber photovoltaic devices. We report solution-processed, environmentally friendly, 30-nm-thick solar cells with short-circuit current density of 27 mA cm−2, a power conversion efficiency of 9.17% (8.85% certified) and high stability under ambient conditions.
dc.format.extent11 p.
dc.language.isodeu
dc.publisherNature
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshSolar cells
dc.subject.otherSolar cells
dc.titleCation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells
dc.typeArticle
dc.subject.lemacCèl·lules solars
dc.identifier.doi10.1038/s41566-021-00950-4
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.nature.com/articles/s41566-021-00950-4
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/725165/EU/Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells/HEINSOL
dc.relation.projectidEQC2019-005797-P
dc.relation.projectid2017SGR1373
dc.relation.projectidCEX2019-000910-S
dc.relation.projectid2017BP0024
dc.relation.projectidEP/L000202
dc.relation.projectidEP/R029431
dc.relation.projectidEP/T022213)
dc.relation.projectidEP/P020194
dc.relation.projectidEP/T022213
dc.relation.projectidEP/N01572X/1
dc.relation.projectid758345
local.citation.publicationNameNature Photonics
local.citation.volume16
local.citation.startingPage235
local.citation.endingPage241


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record