dc.contributor.author | Wang, Yongjie |
dc.contributor.author | Kavanagh, Seán R. |
dc.contributor.author | Burgués-Ceballos, Ignasi |
dc.contributor.author | Walsh, Aron |
dc.contributor.author | Scanlon, David O. |
dc.contributor.author | Konstantatos, Gerasimos |
dc.date.accessioned | 2022-03-30T10:04:02Z |
dc.date.available | 2022-07-14T00:28:39Z |
dc.date.issued | 2022-02-14 |
dc.identifier.citation | Wang, Y. [et al.]. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. "Nature Photonics", 14 Febrer 2022, vol. 16, p. 235-241. |
dc.identifier.uri | http://hdl.handle.net/2117/365008 |
dc.description.abstract | Strong optical absorption by a semiconductor is a highly desirable property for many optoelectronic and photovoltaic applications. The optimal thickness of a semiconductor absorber is primarily determined by its absorption coefficient. To date, this parameter has been considered as a fundamental material property, and efforts to realize thinner photovoltaics have relied on light-trapping structures that add complexity and cost. Here we demonstrate that engineering cation disorder in a ternary chalcogenide semiconductor leads to considerable absorption increase due to enhancement of the optical transition matrix elements. We show that cation-disorder-engineered AgBiS2 colloidal nanocrystals offer an absorption coefficient that is higher than other photovoltaic materials, enabling highly efficient extremely thin absorber photovoltaic devices. We report solution-processed, environmentally friendly, 30-nm-thick solar cells with short-circuit current density of 27 mA cm−2, a power conversion efficiency of 9.17% (8.85% certified) and high stability under ambient conditions. |
dc.format.extent | 11 p. |
dc.language.iso | deu |
dc.publisher | Nature |
dc.rights | Attribution 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Física |
dc.subject.lcsh | Solar cells |
dc.subject.other | Solar cells |
dc.title | Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells |
dc.type | Article |
dc.subject.lemac | Cèl·lules solars |
dc.identifier.doi | 10.1038/s41566-021-00950-4 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.nature.com/articles/s41566-021-00950-4 |
dc.rights.access | Open Access |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/725165/EU/Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells/HEINSOL |
dc.relation.projectid | EQC2019-005797-P |
dc.relation.projectid | 2017SGR1373 |
dc.relation.projectid | CEX2019-000910-S |
dc.relation.projectid | 2017BP0024 |
dc.relation.projectid | EP/L000202 |
dc.relation.projectid | EP/R029431 |
dc.relation.projectid | EP/T022213) |
dc.relation.projectid | EP/P020194 |
dc.relation.projectid | EP/T022213 |
dc.relation.projectid | EP/N01572X/1 |
dc.relation.projectid | 758345 |
local.citation.publicationName | Nature Photonics |
local.citation.volume | 16 |
local.citation.startingPage | 235 |
local.citation.endingPage | 241 |