Show simple item record

dc.contributor.authorCembrano Gennari, Gabriela
dc.contributor.authorPuig Cayuela, Vicenç
dc.contributor.authorLorenz Svensen, Jan
dc.contributor.authorCongcong, Sun
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2022-03-29T12:05:36Z
dc.date.available2023-11-01T01:30:01Z
dc.date.issued2021-10
dc.identifier.citationCembrano, M. [et al.]. Chance-constrained stochastic MPC of Astlingen urban drainage benchmark network. "Control engineering practice", Octubre 2021, vol. 115, núm. 104900, p. 1-2.
dc.identifier.issn0967-0661
dc.identifier.urihttp://hdl.handle.net/2117/364961
dc.description.abstractIn urban drainage systems (UDS), a proven method for reducing the combined sewer overflow (CSO) pollution is real-time control (RTC) based on model predictive control (MPC). MPC methodologies for RTC of UDSs in the literature rely on the computation of the optimal control strategies based on deterministic rain forecast. However, in reality, uncertainties exist in rainfall forecasts which affect severely accuracy of computing the optimal control strategies. Under this context, this work aims to focus on the uncertainty associated with the rainfall forecasting and its effects. One option is to use stochastic information about the rain events in the controller; in the case of using MPC methods, the class called stochastic MPC is available, including several approaches such as the chance-constrained MPC(CC-MPC) method. In this study, we apply CC-MPC to the UDS. Moreover, we also compare the operational behavior of both the classical MPC with perfect forecast and the CC-MPC based on different stochastic scenarios of the rain forecast. The application and comparison have been based on simulations using a SWMM model of the Astlingen urban drainage benchmark network. From the simulations, it was found that CSO volumes were larger when CC-MPC had overestimating forecast biases, while for MPC they increased with any presence of forecast biases.
dc.description.sponsorshipThis document is the results of the research project funded by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656), internal project of TWINs, and also supported by Innovation Fond Denmark through the Water Smart City project (project 5157-00009B).
dc.format.extent2 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica
dc.subjectÀrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament de l'aigua
dc.subject.lcshPredictive control
dc.subject.otherAstlingen benchmark network
dc.subject.otherCSO
dc.subject.otherStochastic MPC
dc.subject.otherChance-Constrained
dc.subject.otherReal-Time Control
dc.titleChance-constrained stochastic MPC of Astlingen urban drainage benchmark network
dc.typeArticle
dc.subject.lemacDrenatge urbà
dc.contributor.groupUniversitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
dc.identifier.doi10.1016/j.conengprac.2021.104900
dc.description.peerreviewedPeer Reviewed
dc.subject.inspecClassificació INSPEC::Control theory
dc.relation.publisherversionhttps://www.journals.elsevier.com/control-engineering-practice
dc.rights.accessOpen Access
local.identifier.drac32566782
dc.description.versionPostprint (published version)
local.citation.authorCembrano, M.; Puig, V.; Lorenz, J.; Congcong , S.
local.citation.publicationNameControl engineering practice
local.citation.volume115
local.citation.number104900
local.citation.startingPage1
local.citation.endingPage2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record