dc.contributor.author | Cembrano Gennari, Gabriela |
dc.contributor.author | Puig Cayuela, Vicenç |
dc.contributor.author | Lorenz Svensen, Jan |
dc.contributor.author | Congcong, Sun |
dc.contributor.other | Institut de Robòtica i Informàtica Industrial |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
dc.date.accessioned | 2022-03-29T12:05:36Z |
dc.date.available | 2023-11-01T01:30:01Z |
dc.date.issued | 2021-10 |
dc.identifier.citation | Cembrano, M. [et al.]. Chance-constrained stochastic MPC of Astlingen urban drainage benchmark network. "Control engineering practice", Octubre 2021, vol. 115, núm. 104900, p. 1-2. |
dc.identifier.issn | 0967-0661 |
dc.identifier.uri | http://hdl.handle.net/2117/364961 |
dc.description.abstract | In urban drainage systems (UDS), a proven method for reducing the combined sewer overflow (CSO) pollution is real-time control (RTC) based on model predictive control (MPC). MPC methodologies for RTC of UDSs in the literature rely on the computation of the optimal control strategies based on deterministic rain forecast. However, in reality, uncertainties exist in rainfall forecasts which affect severely accuracy of computing the optimal control strategies. Under this context, this work aims to focus on the uncertainty associated with the rainfall forecasting and its effects. One option is to use stochastic information about the rain events in the controller; in the case of using MPC methods, the class called stochastic MPC is available, including several approaches such as the chance-constrained MPC(CC-MPC) method. In this study, we apply CC-MPC to the UDS. Moreover, we also compare the operational behavior of both the classical MPC with perfect forecast and the CC-MPC based on different stochastic scenarios of the rain forecast. The application and comparison have been based on simulations using a SWMM model of the Astlingen urban drainage benchmark network. From the simulations, it was found that CSO volumes were larger when CC-MPC had overestimating forecast biases, while for MPC they increased with any presence of forecast biases. |
dc.description.sponsorship | This document is the results of the research project funded by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656), internal project of TWINs, and also supported by Innovation Fond Denmark through the Water Smart City project (project 5157-00009B). |
dc.format.extent | 2 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica |
dc.subject | Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament de l'aigua |
dc.subject.lcsh | Predictive control |
dc.subject.other | Astlingen benchmark network |
dc.subject.other | CSO |
dc.subject.other | Stochastic MPC |
dc.subject.other | Chance-Constrained |
dc.subject.other | Real-Time Control |
dc.title | Chance-constrained stochastic MPC of Astlingen urban drainage benchmark network |
dc.type | Article |
dc.subject.lemac | Drenatge urbà |
dc.contributor.group | Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control |
dc.identifier.doi | 10.1016/j.conengprac.2021.104900 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.inspec | Classificació INSPEC::Control theory |
dc.relation.publisherversion | https://www.journals.elsevier.com/control-engineering-practice |
dc.rights.access | Open Access |
local.identifier.drac | 32566782 |
dc.description.version | Postprint (published version) |
local.citation.author | Cembrano, M.; Puig, V.; Lorenz, J.; Congcong , S. |
local.citation.publicationName | Control engineering practice |
local.citation.volume | 115 |
local.citation.number | 104900 |
local.citation.startingPage | 1 |
local.citation.endingPage | 2 |