Static Graphs for Coding Productivity in OpenACC

Ver/Abrir
Cita com:
hdl:2117/363953
Tipo de documentoComunicación de congreso
Fecha de publicación2022
EditorInstitute of Electrical and Electronics Engineers (IEEE)
Condiciones de accesoAcceso abierto
Todos los derechos reservados. Esta obra
está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales
existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la
autorización del titular de los derechos
Resumen
The main contribution of this work is to increase the coding productivity for GPU programming by using the concept of Static Graphs. To do so, we have combined the new CUDA Graph API with the OpenACC programming model. We use as test cases a well-known and widely used problems in HPC and AI: the Particle Swarm Optimization. We complement the OpenACC functionality with the use of CUDA Graph, achieving accelerations of more than one order of magnitude, and a performance very close to a reference and optimized CUDA code. Finally, we propose a new specification to incorporate the concept of Static Graphs into the OpenACC specification.
CitaciónToledo, L. [et al.]. Static Graphs for Coding Productivity in OpenACC. A: International Conference on High Performance Computing. "2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC): 17-20 Dec. 2021, Bengaluru, India: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 364-369. ISBN 978-1-6654-1016-8. DOI 10.1109/HiPC53243.2021.00050.
ISBN978-1-6654-1016-8
ISSN2640-0316
Versión del editorhttps://ieeexplore.ieee.org/document/9680348
Colecciones
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
HiPC_2021.pdf | 366,0Kb | Ver/Abrir |