Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.146 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A consistent approximation of the total perimeter functional for topology optimization algorithms

Thumbnail
View/Open
cocv210134.pdf (3,651Mb)
 
10.1051/cocv/2022005
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/363918

Show full item record
Amstutz, Samuel
Dapogny, Charles
Ferrer Ferré, ÀlexMés informacióMés informacióMés informació
Document typeArticle
Defense date2022-02-24
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
Abstract
This article revolves around the total perimeter functional, one particular version of the perimeter of a shape O contained in a fixed computational domain D measuring the total area of its boundary ¿O, as opposed to its relative perimeter, which only takes into account the regions of ¿O strictly inside D. We construct and analyze approximate versions of the total perimeter which make sense for general “density functions” u, as generalized characteristic functions of shapes. Their use in the context of density-based topology optimization is particularly convenient insofar as they do not involve the gradient of the optimized function u. Two different constructions are proposed: while the first one involves the convolution of the function u with a smooth mollifier, the second one is based on the resolution of an elliptic boundary-value problem featuring Robin boundary conditions. The “consistency” of these approximations with the original notion of total perimeter is appraised from various points of view. At first, we prove the pointwise convergence of our approximate functionals, then the convergence of their derivatives, as the level of smoothing tends to 0, when the considered density function u is the characteristic function of a “regular enough” shape O ¿ D. Then, we focus on the G-convergence of the second type of approximate total perimeter functional, that based on elliptic regularization. Several numerical examples are eventually presented in two and three space dimensions to validate our theoretical findings and demonstrate the efficiency of the proposed functionals in the context of structural optimization.
CitationAmstutz, S.; Dapogny, C.; Ferrer, A. A consistent approximation of the total perimeter functional for topology optimization algorithms. "ESAIM. Control, optimisation and calculus of variations", 24 Febrer 2022, vol. 28, p. 18:1-18:71. 
URIhttp://hdl.handle.net/2117/363918
DOI10.1051/cocv/2022005
ISSN1292-8119
Publisher versionhttps://www.esaim-cocv.org/articles/cocv/abs/2022/01/cocv210134/cocv210134.html
Collections
  • Departament de Física - Articles de revista [2.551]
  • ANiComp - Anàlisi numèrica i computació científica - Articles de revista [125]
  • CIMNE - Centre Internacional de Mètodes Numèrics en Enginyeria - Articles de revista [1.085]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
cocv210134.pdf3,651MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina