Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.728 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Robòtica de l'IRI
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Robòtica de l'IRI
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning methods for quality prediction in thermoplastics injection molding

Thumbnail
View/Open
2520-Machine-learning-methods-for-quality-prediction-in-thermoplastics-injection-molding.pdf (730,3Kb)
Share:
 
 
10.1109/ICECET52533.2021.9698455
 
  View Usage Statistics
Cita com:
hdl:2117/363525

Show full item record
Silva, Bruno Miguel Lopes eMés informació
Joao, Sousa
Alenyà Ribas, GuillemMés informacióMés informacióMés informació
Document typeConference report
Defense date2021
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Nowadays, competitiveness is a reality in all industrial fields and the plastic injection industry is not an exception. Due to the complex intrinsic changes that the parameters undergo during the injection process, it is essential to monitor the parameters that influence the quality of the final part to guarantee a superior quality of service provided to customers. Quality requirements impose the development of intelligent systems capable to detect defects in the produced parts. This article presents a first step towards building an intelligent system for classifying the quality of produced parts. The basic approach of this work is machine learning methods (Artificial Neural Networks and Support Vector Machines) and techniques that combine the two previous approaches (ensemble method). These are trained as classifiers to detect conformity or even defect types in parts. The data analyzed were collected at a plastic injection company in Portugal. The results show that these techniques are capable of incorporating the non-linear relationships between the process variables, which allows for a good accuracy ( ˜ 99%) in the identification of defects. Although these techniques present good accuracy, we show that taking into account the history of the last cycles and the use of combined techniques improves even further the performance. The approach presented in this article has a number of potential advantages for online predicting of parts quality in injection molding processes.
Description
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
CitationSilva, B.; Joao, S.; Alenyà, G. Machine learning methods for quality prediction in thermoplastics injection molding. A: International Conference on Electrical, Computer and Energy Technologies. "Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 1-6. DOI 10.1109/ICECET52533.2021.9698455. 
URIhttp://hdl.handle.net/2117/363525
DOI10.1109/ICECET52533.2021.9698455
Publisher versionhttps://ieeexplore.ieee.org/document/9698455
Collections
  • ROBiri - Grup de Robòtica de l'IRI - Ponències/Comunicacions de congressos [219]
  • Doctorat en Automàtica, Robòtica i Visió - Ponències/Comunicacions de congressos [135]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2520-Machine-le ... tics-injection-molding.pdf730,3KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina