Show simple item record

dc.contributor.authorde León Rodríguez, Manuel
dc.contributor.authorLainz Valcázar, Manuel
dc.contributor.authorMuñoz Lecanda, Miguel Carlos
dc.contributor.authorRomán Roy, Narciso
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2022-03-07T10:41:23Z
dc.date.issued2021-12-28
dc.identifier.citationDe Leó, M. [et al.]. Constrained Lagrangian dissipative contact dynamics. "Journal of mathematical physics", 28 Desembre 2021, vol. 62, p. 122902:1-122902:24.
dc.identifier.issn0022-2488
dc.identifier.otherhttps://arxiv.org/abs/2109.05295v2
dc.identifier.urihttp://hdl.handle.net/2117/363512
dc.description.abstractWe show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. As a consequence, we obtain the dynamics of contact nonholonomic and vakonomic systems as an ordinary variational calculus with constraints on a Lagrangian with a dissipative variable. The variation of the energy and the other dissipative quantities is also obtained, giving the usual results.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshHamiltonian systems
dc.subject.lcshSymplectic geometry
dc.subject.lcshMechanics
dc.subject.otherLagrangian and Hamiltonian formalisms
dc.subject.otherContact mechanics
dc.subject.otherContact manifolds
dc.subject.otherHolonomic and vakonomic systems
dc.subject.otherVariational methods
dc.titleConstrained Lagrangian dissipative contact dynamics
dc.typeArticle
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacGeometria simplèctica
dc.subject.lemacMecànica
dc.contributor.groupUniversitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
dc.identifier.doi10.1063/5.0071236
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/5.0071236
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac32776599
dc.description.versionPostprint (author's final draft)
dc.date.lift2022-12-28
local.citation.authorde Leó, M.; Lainz, M.; Muñoz-Lecanda, Miguel C.; Roman-Roy, N.
local.citation.publicationNameJournal of mathematical physics
local.citation.volume62
local.citation.startingPage122902:1
local.citation.endingPage122902:24


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record