Show simple item record

dc.contributor.authorPlana Rius, Ferran
dc.contributor.authorPhilipsen, Mark P.
dc.contributor.authorMirats Tur, Josep Maria
dc.contributor.authorMoeslund, Thomas
dc.contributor.authorAngulo Bahón, Cecilio
dc.contributor.authorCasas Guix, Marc
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2022-03-03T14:54:57Z
dc.date.available2022-03-03T14:54:57Z
dc.date.issued2022-01-24
dc.identifier.citationPlana, F. [et al.]. Autoencoders for semi-supervised water level modeling in sewer pipes with sparse labeled data. "Water (Switzerland)", 24 Gener 2022, vol. 14, núm. 3, article 333, p. 1-18.
dc.identifier.issn2073-4441
dc.identifier.urihttp://hdl.handle.net/2117/363386
dc.description.abstractMore frequent and thorough inspection of sewer pipes has the potential to save billions in utilities. However, the amount and quality of inspection are impeded by an imprecise and highly subjective manual process. It involves technicians judging stretches of sewer based on video from remote-controlled robots. Determining the state of sewer pipes based on these videos entails a great deal of ambiguity. Furthermore, the frequency with which the different defects occur differs a lot, leading to highly imbalanced datasets. Such datasets represent a poor basis for automating the labeling process using supervised learning. With this paper we explore the potential of self-supervision as a method for reducing the need for large numbers of well-balanced labels. First, our models learn to represent the data distribution using more than a million unlabeled images, then a small number of labeled examples are used to learn a mapping from the learned representations to a relevant target variable, in this case, water level. We choose a convolutional Autoencoder, a Variational Autoencoder and a Vector-Quantised Variational Autoencoder as the basis for our experiments. The best representations are shown to be learned by the classic Autoencoder with the Multi-Layer Perceptron achieving a Mean Absolute Error of 9.93. This is an improvement of 9.62 over the fully supervised baseline.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.lcshSupervised learning (Machine learning)
dc.subject.lcshWater-pipes
dc.subject.otherSelf-supervised
dc.subject.otherSemi-supervised
dc.subject.otherSupervised
dc.subject.otherAutoencoders and latent space
dc.subject.otherSparse data
dc.subject.otherData distribution
dc.subject.otherWater
dc.titleAutoencoders for semi-supervised water level modeling in sewer pipes with sparse labeled data
dc.typeArticle
dc.subject.lemacAprenentatge supervisat (Aprenentatge automàtic)
dc.subject.lemacAigua -- Canonades
dc.contributor.groupUniversitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement
dc.identifier.doi10.3390/w14030333
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/2073-4441/14/3/333
dc.rights.accessOpen Access
local.identifier.drac32848054
dc.description.versionPostprint (published version)
local.citation.authorPlana, F.; Philipsen, M.; Mirats, J.; Moeslund, T.; Angulo, C.; Casas, M.
local.citation.publicationNameWater (Switzerland)
local.citation.volume14
local.citation.number3, article 333
local.citation.startingPage1
local.citation.endingPage18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record