Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
60.684 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autoencoders for semi-supervised water level modeling in sewer pipes with sparse labeled data

Thumbnail
View/Open
water-14-00333.pdf (4,898Mb)
Share:
 
 
10.3390/w14030333
 
  View Usage Statistics
Cita com:
hdl:2117/363386

Show full item record
Plana Rius, Ferran
Philipsen, Mark P.
Mirats Tur, Josep Maria
Moeslund, Thomas
Angulo Bahón, CecilioMés informacióMés informacióMés informació
Casas Guix, Marc
Document typeArticle
Defense date2022-01-24
Rights accessOpen Access
Attribution 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 International
Abstract
More frequent and thorough inspection of sewer pipes has the potential to save billions in utilities. However, the amount and quality of inspection are impeded by an imprecise and highly subjective manual process. It involves technicians judging stretches of sewer based on video from remote-controlled robots. Determining the state of sewer pipes based on these videos entails a great deal of ambiguity. Furthermore, the frequency with which the different defects occur differs a lot, leading to highly imbalanced datasets. Such datasets represent a poor basis for automating the labeling process using supervised learning. With this paper we explore the potential of self-supervision as a method for reducing the need for large numbers of well-balanced labels. First, our models learn to represent the data distribution using more than a million unlabeled images, then a small number of labeled examples are used to learn a mapping from the learned representations to a relevant target variable, in this case, water level. We choose a convolutional Autoencoder, a Variational Autoencoder and a Vector-Quantised Variational Autoencoder as the basis for our experiments. The best representations are shown to be learned by the classic Autoencoder with the Multi-Layer Perceptron achieving a Mean Absolute Error of 9.93. This is an improvement of 9.62 over the fully supervised baseline.
CitationPlana, F. [et al.]. Autoencoders for semi-supervised water level modeling in sewer pipes with sparse labeled data. "Water (Switzerland)", 24 Gener 2022, vol. 14, núm. 3, article 333, p. 1-18. 
URIhttp://hdl.handle.net/2117/363386
DOI10.3390/w14030333
ISSN2073-4441
Publisher versionhttps://www.mdpi.com/2073-4441/14/3/333
Collections
  • Computer Sciences - Articles de revista [285]
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.299]
  • Doctorat en Automàtica, Robòtica i Visió - Articles de revista [138]
  • GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [94]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
water-14-00333.pdf4,898MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina