Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.711 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

IGNNITION: A framework for fast prototyping of Graph Neural Networks

Thumbnail
View/Open
GNNSys21_paper_4 (2).pdf (535,5Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/363370

Show full item record
Pujol Perich, David
Suárez-Varela Maciá, José RafaelMés informacióMés informació
Ferriol Galmés, MiquelMés informacióMés informació
Xiao, Shihan
Wu, Bo
Cabellos Aparicio, AlbertoMés informacióMés informacióMés informació
Barlet Ros, PereMés informacióMés informacióMés informació
Document typeConference report
Defense date2021
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectNGI-POINTER - NGI Program for Open INTErnet Renovation (EC-H2020-871528)
DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL (AEI-TEC2017-90034-C2-1-R)
Abstract
Recent years have seen the vast potential of Graph Neural Networks (GNN) in many fields where data is structured as graphs (e.g., chemistry, logistics). However, implementing a GNN prototype is still a cumbersome task that requires strong skills in neural network programming. This poses an important barrier to researchers and practitioners that want to apply GNN to their specific problems but do not have the needed Machine Learning expertise. In this paper, we present IGNNITION, a novel open-source framework for fast prototyping of GNNs. This framework is built on top of TensorFlow, and offers an intuitive high-level abstraction that allows the user to define its GNN model via a YAML file, being completely oblivious to the tensor-wise operations made internally by the model. At the same time, IGNNITION offers great flexibility to build any GNN-based architecture. To showcase its versatility, we implement two state-of-the-art GNN models applied to the field of computer networks, which differ considerably from well-known standard GNN architectures. Our evaluation results show that the GNNs produced by IGNNITION are equivalent in performance to implementations directly coded in TensorFlow.
CitationPujol, D. [et al.]. IGNNITION: A framework for fast prototyping of Graph Neural Networks. A: Workshop on Graph Neural Networks and Systems. "Proceedings of the First MLSys Workshop on Graph Neural Networks and Systems (GNNSys'21), San Jose, CA, USA, 2021". 2021. 
URIhttp://hdl.handle.net/2117/363370
Other identifiershttps://gnnsys.github.io/
Collections
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla - Ponències/Comunicacions de congressos [237]
  • Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [221]
  • Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.821]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
GNNSys21_paper_4 (2).pdf535,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina