Show simple item record

dc.contributor.authorDíaz Cort, Josep
dc.contributor.authorKirousis, Lefteris
dc.contributor.authorKokonezi, Sofia
dc.contributor.authorLivieratos, John
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2022-03-03T11:28:34Z
dc.date.available2022-03-03T11:28:34Z
dc.date.issued2019-10-10
dc.identifier.citationDiaz, J. [et al.]. Algorithmically efficient syntactic characterization of possibility domains. "Bulletin of the Hellenic Mathematical Society", 10 Octubre 2019, vol. 63, p. 97-135.
dc.identifier.issn0072-7466
dc.identifier.urihttp://hdl.handle.net/2117/363363
dc.description.abstractIn the field of Judgment Aggregation, a domain, that is a subset of a Cartesian power of {0, 1}, is considered to reflect abstract rationality restrictions on vectors of two-valued judgments on a number of issues. We are interested in the ways we can aggregate the positions of a set of individuals, whose positions over each issue form vectors of the domain, by means of unanimous (idempotent) functions, whose output is again an element of the domain. Such functions are called non-dictatorial, when their output is not simply the positions of a single individual. Here, we consider domains admitting various kinds of non-dictatorial aggregators, which reflect various properties of majority aggregation: (locally) non-dictatorial, generalized dictatorships, anonymous, monotone, StrongDem and systematic. We show that interesting and, in some sense, democratic voting schemes are always provided by domains that can be described by propositional formulas of specific syntactic types we define. Furthermore, we show that we can efficiently recognize such formulas and that, given a domain, we can both efficiently check if it is described by such a formula and, in case it is, construct it. Our results fall in the realm of classical results concerning the syntactic characterization of domains with specific closure properties, like domains closed under logical AND which are the models of Horn formulas. The techniques we use to obtain our results draw from judgment aggregation as well as propositional logic and universal algebra.
dc.description.sponsorshipThe first two authors’ research was partially supported by TIN2017-86727-C2-1-R, GRAMM. The research of the second author was carried out while visiting the Computer Science Department of the Universitat Politècnica de Catalunya.
dc.format.extent39 p.
dc.language.isoeng
dc.rightsPublished in open access with the explicit permission of the publisher.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat
dc.subject.lcshComputational complexity
dc.subject.otherCollective decision making
dc.subject.otherComputational social choice
dc.subject.otherJudgment aggregation
dc.subject.otherLogical relations
dc.subject.otherAlgorithm complexity
dc.titleAlgorithmically efficient syntactic characterization of possibility domains
dc.typeArticle
dc.subject.lemacComplexitat computacional
dc.contributor.groupUniversitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://bulletin.math.uoc.gr/vol/63/63-97-135.pdf
dc.rights.accessOpen Access
local.identifier.drac32831438
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-86727-C2-1-R/ES/MODELOS Y METODOS BASADOS EN GRAFOS PARA LA COMPUTACION EN GRAN ESCALA/
local.citation.authorDiaz, J.; Kirousis, L.; Kokonezi, S.; Livieratos, J.
local.citation.publicationNameBulletin of the Hellenic Mathematical Society
local.citation.volume63
local.citation.startingPage97
local.citation.endingPage135


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record