Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.147 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequence-to-sequence models for workload interference prediction on batch processing datacenters

Thumbnail
View/Open
Sequence2Sequence__preprint_.pdf (1,906Mb)
 
10.1016/j.future.2020.03.058
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/363357

Show full item record
Buchaca Prats, David
Marcual Medina, Joan
Berral García, Josep LluísMés informacióMés informacióMés informació
Carrera Pérez, DavidMés informació
Document typeArticle
Defense date2020-09
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
ProjectHi-EST - Holistic Integration of Emerging Supercomputing Technologies (EC-H2020-639595)
COMPUTACION DE ALTAS PRESTACIONES VII (MINECO-TIN2015-65316-P)
Abstract
Co-scheduling of jobs in data centers is a challenging scenario where jobs can compete for resources, leading to severe slowdowns or failed executions. Efficient job placement on environments where resources are shared requires awareness on how jobs interfere during execution, to go far beyond ineffective resource overbooking techniques. Current techniques, most of which already involve machine learning and job modeling, are based on workload behavior summarization over time, rather than focusing on effective job requirements at each instant of the execution. In this work, we propose a methodology for modeling co-scheduling of jobs on data centers, based on their behavior towards resources and execution time and using sequence-to-sequence models based on recurrent neural networks. The goal is to forecast co-executed jobs footprint on resources throughout their execution time, from the profile shown by the individual jobs, in order to enhance resource manager and scheduler placement decisions. The methods presented herein are validated by using High Performance Computing benchmarks based on different frameworks (such as Hadoop and Spark) and applications (CPU bound, IO bound, machine learning, SQL queries...). Experiments show that the model can correctly identify the resource usage trends from previously seen and even unseen co-scheduled jobs.
CitationBuchaca, D. [et al.]. Sequence-to-sequence models for workload interference prediction on batch processing datacenters. "Future generation computer systems", Setembre 2020, vol. 110, p. 155-166. 
URIhttp://hdl.handle.net/2117/363357
DOI10.1016/j.future.2020.03.058
ISSN0167-739X
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S0167739X19310921
Other identifiershttps://arxiv.org/abs/2006.14429
Collections
  • Computer Sciences - Articles de revista [362]
  • CAP - Grup de Computació d'Altes Prestacions - Articles de revista [382]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Sequence2Sequence__preprint_.pdf1,906MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina