Show simple item record

dc.contributor.authorde Arriba Serra, Ariadna
dc.contributor.authorOriol Hilari, Marc
dc.contributor.authorFranch Gutiérrez, Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.date.accessioned2022-03-03T10:12:24Z
dc.date.available2022-03-03T10:12:24Z
dc.date.issued2021
dc.identifier.citationDe Arriba, A.; Oriol, M.; Franch, X. Merging datasets for emotion analysis. A: International Workshop on Software Engineering Automation: A Natural Language Perspective. "2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops: 15-19 November 2021, online event: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 227-231. ISBN 978-1-6654-3583-3. DOI 10.1109/ASEW52652.2021.00051.
dc.identifier.isbn978-1-6654-3583-3
dc.identifier.urihttp://hdl.handle.net/2117/363351
dc.description.abstractContext. Applying sentiment analysis is in general a laborious task. Furthermore, if we add the task of getting a good quality dataset with balanced distribution and enough samples, the job becomes more complicated. Objective. We want to find out whether merging compatible datasets improves emotion analysis based on machine learning (ML) techniques, compared to the original, individual datasets. Method. We obtained two datasets with Covid-19-related tweets written in Spanish, and then built from them two new datasets combining the original ones with different consolidation of balance. We analyzed the results according to precision, recall, F1-score and accuracy. Results. The results obtained show that merging two datasets can improve the performance of ML models, particularly the F1-score, when the merging process follows a strategy that optimizes the balance of the resulting dataset. Conclusions. Merging two datasets can improve the performance of ML models for emotion analysis, whilst saving resources for labeling training data. This might be especially useful for several software engineering activities that leverage on ML-based emotion analysis techniques.
dc.description.sponsorshipThis paper has been funded by the Spanish Ministerio de Ciencia e Innovación under project / funding scheme PID2020-117191RB.
dc.format.extent5 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subjectÀrees temàtiques de la UPC::Informàtica::Enginyeria del software
dc.subject.lcshMachine learning
dc.subject.lcshOnline social networks
dc.subject.lcshSentiment analysis
dc.subject.otherEmotion classification
dc.subject.otherMerging datasets
dc.subject.otherSocial media
dc.subject.otherTwitter
dc.subject.otherBETO
dc.titleMerging datasets for emotion analysis
dc.typeConference report
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacXarxes socials en línia
dc.subject.lemacEmocions
dc.contributor.groupUniversitat Politècnica de Catalunya. inSSIDE - integrated Software, Service, Information and Data Engineering
dc.identifier.doi10.1109/ASEW52652.2021.00051
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9680305
dc.rights.accessOpen Access
local.identifier.drac32824318
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117191RB-I00/ES/DESARROLLO, OPERATIVA Y GOBERNANZA DE DATOS PARA SISTEMAS SOFTWARE BASADOS EN APRENDIZAJE AUTOMATICO/
local.citation.authorde Arriba, A.; Oriol, M.; Franch, X.
local.citation.contributorInternational Workshop on Software Engineering Automation: A Natural Language Perspective
local.citation.publicationName2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops: 15-19 November 2021, online event: proceedings
local.citation.startingPage227
local.citation.endingPage231


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record