Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data classification methodology for electronic noses using uniform manifold approximation and projection and extreme learning machine

Thumbnail
View/Open
Article principal (7,150Mb)
Share:
 
 
10.3390/math10010029
 
  View Usage Statistics
Cita com:
hdl:2117/363208

Show full item record
León Medina, Jersson XavierMés informacióMés informació
Parés Mariné, NúriaMés informacióMés informacióMés informació
Anaya Vejar, Maribel
Tibaduiza Burgos, Diego Alexander
Pozo Montero, FrancescMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-12-22
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectDESARROLLO Y VALIDACION DE SISTEMAS DE MONITORIZACION INTELIGENTE, ESTRATEGIAS DE CONTROL DEL PITCH Y DE AMORTIGUACION ESTRUCTURAL PARA AEROGENERADORES OFFSHORE FLOTANTES (AEI-DPI2017-82930-C2-1-R)
SIMULACION IN VIVO DEL EFECTO DE LA HIPOXIA Y LA DOSIS DEL FARMACO EN EL CRECIMIENTO DEL GLIOBLASTOMA (AEI-PGC2018-097257-B-C33)
Abstract
The classification and use of robust methodologies in sensor array applications of electronic noses (ENs) remain an open problem. Among the several steps used in the developed methodologies, data preprocessing improves the classification accuracy of this type of sensor. Data preprocessing methods, such as data transformation and data reduction, enable the treatment of data with anomalies, such as outliers and features, that do not provide quality information; in addition, they reduce the dimensionality of the data, thereby facilitating the tasks of a machine learning classifier. To help solve this problem, in this study, a machine learning methodology is introduced to improve signal processing and develop methodologies for classification when an EN is used. The proposed methodology involves a normalization stage to scale the data from the sensors, using both the well-known min-max approach and the more recent mean-centered unitary group scaling (MCUGS). Next, a manifold learning algorithm for data reduction is applied using uniform manifold approximation and projection (UMAP). The dimensionality of the data at the input of the classification machine is reduced, and an extreme learning machine (ELM) is used as a machine learning classifier algorithm. To validate the EN classification methodology, three datasets of ENs were used. The first dataset was composed of 3600 measurements of 6 volatile organic compounds performed by employing 16 metal-oxide gas sensors. The second dataset was composed of 235 measurements of 3 different qualities of wine, namely, high, average, and low, as evaluated by using an EN sensor array composed of 6 different sensors. The third dataset was composed of 309 measurements of 3 different gases obtained by using an EN sensor array of 2 sensors. A 5-fold cross-validation approach was used to evaluate the proposed methodology. A test set consisting of 25% of the data was used to validate the methodology with unseen data. The results showed a fully correct average classification accuracy of 1 when the MCUGS, UMAP, and ELM methods were used. Finally, the effect of changing the number of target dimensions on the reduction of the number of data was determined based on the highest average classification accuracy.
CitationLeon-Medina, J.X. [et al.]. Data classification methodology for electronic noses using uniform manifold approximation and projection and extreme learning machine. "Mathematics", 22 Desembre 2021, vol. 10, núm. 1, p. 29:1-29:38. 
URIhttp://hdl.handle.net/2117/363208
DOI10.3390/math10010029
ISSN2227-7390
Publisher versionhttps://www.mdpi.com/2227-7390/10/1/29
Collections
  • Departament de Matemàtiques - Articles de revista [3.000]
  • CoDAlab - Control, Modelització, Identificació i Aplicacions - Articles de revista [254]
  • Doctorat en Enginyeria Sísmica i Dinàmica Estructural - Articles de revista [19]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2022_62_MATHEMATICS_leo_par_ana_tib_poz_UMAP.pdfArticle principal7,150MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina